wiki:Documentation/CGettingStarted

Version 101 (modified by jennyshane, 10 months ago) ( diff )

How to get started

First, you will need an ORBIT account. Please check the usage policy if you are eligible. Typically, in order to get an account, one would have to register for a user account and get it approved by the PI in charge of the project/institution they wish to be part of. If the particular institution is not available on the user account registration page, the appropriate PI can register for an institutional account.

IMPORTANT: Once you have an account, configure your ssh client to use key based authentication.

Six Steps

A typical experiment requires the following six steps:

1. Create a resource reservation

The user needs a set of nodes/resources from a domain to run the experiment on.

Creating a Reservation

Before you can access the testbed, you need to make a reservation for a particular domain and get it approved by the reservation service.

First time users are highly encouraged to reserve time on a sandbox instead of the main grid, and start with the provided "Hello World" experiment.

For the rest of this tutorial we will assume that the reservation was made for the sb1 domain.

2. Login into reserved domain

After you receive the reservation confirmation email, you can access the reserved domain by SSH'ing to the corresponding domain console.

Login into your reserved domain

During your approved time slot, you will be able to ssh into the console of the respective domain. A console is a dedicated machine that allows access to all resources in that domain. The console is not meant to be a part of your experiment. You will not be able to install software or change system settings.

For example, to access the sandbox 1 console:

yourhost>ssh username@console.sb1.orbit-lab.org

                              Welcome to
    ___  ____  ____ ___ _____     _        _    ____                  
   / _ \|  _ \| __ )_ _|_   _|   | |      / \  | __ )  ___  _ __ __ _ 
  | | | | |_) |  _ \| |  | |_____| |     / _ \ |  _ \ / _ \| '__/ _` |
  | |_| |  _ <| |_) | |  | |_____| |___ / ___ \| |_) | (_) | | | (_| |
   \___/|_| \_\____/___| |_|     |_____/_/   \_\____(_)___/|_|  \__, |
                                                                |___/ 

 Hostname : console.sb1.orbit-lab.org
 OS       : Ubuntu 16.04.7 LTS 4.15.0-142-generic x86_64
 CPU      : 1 x Intel Xeon Processor (Skylake)
            Total of 6 cores, 6 threads
 Load Avg : 0.00 (1min), 0.00 5(min), 0.00 (15min)
 Memory   : 2.9G (Free) / 3.9G (Total)
 Uptime   : up 1 day, 19 hours, 13 minutes
 Users    : 1

Last login: Wed Jan 1 12:00:00 2020 from XX.XX.XX.XX
username@console:~$

3. Load an image onto the nodes

Prior to executing the "Hello World" experiment, users need to install a system image on the hard disks of the nodes. For this tutorial we will use baseline20.04.ndz. This image is built on top of Ubuntu 20.04, and is pre-configured with a minimal set of required software so that experimenters can customize it for their needs. For information about the contents of baseline images, check here: software / hardware. The imaging process will turn the nodes off after completing imaging.

Load an Image

  1. Before we begin using the nodes, it's a good idea to check their status first. This is done with the omf stat command.

    omf stat

    This omf command is used to display the power status of the node/domain.

    Usage: omf stat

    username@consoles.outdoor:omf stat
    Returns the status of the nodes in a testbed
    Usage:
          omf-5.4 stat [-h] [-s] [-t TOPOLOGY] [-c AGGREGATE]
     
          With: 
          -h, --help                print this help message
          -s, --summary             print a summary of the node status for the testbed
          -c, --config AGGREGATE    use testbed AGGREGATE
          -t, --topology TOPOLOGY   a valid topology file or description (defaults to 'system:topo:all')
     
          Some Examples: 
                        omf-5.4 stat
                        omf-5.4 stat -s
                        omf-5.4 stat -t omf.nicta.node1,omf.nicta.node2 -c sb1
                        omf-5.4 stat -t system:topo:all -c grid
    

    Individual nodes are identified in the output of stat command by their fully qualified domain name (FQDN). This establishes their "coordinates" and the "domain" to which they belong. Nodes in different domains typically can NOT see each other. Node can be in 1 of 3 states:

    POWEROFF Node is Available for use but turned off
    POWERON Node is Available and is on
    NOT REGISTERED Node is not Available for use

    Example: omf stat on the outdoor domain

    user@console.outdoor:~# omf stat -t all
    
     INFO NodeHandler: OMF Experiment Controller 5.4 (git 6d34264)
     INFO NodeHandler: Slice ID: default_slice (default)
     INFO NodeHandler: Experiment ID: default_slice-2012-10-14t14.42.15-04.00
     INFO NodeHandler: Message authentication is disabled
     INFO Experiment: load system:exp:stdlib
     INFO property.resetDelay: value = 210 (Fixnum)
     INFO property.resetTries: value = 1 (Fixnum)
     INFO Experiment: load system:exp:eventlib
     INFO Experiment: load system:exp:stat
     INFO Topology: Loading topology ''.
     INFO property.nodes: value = "system:topo:all" (String)
     INFO property.summary: value = false (FalseClass)
     INFO Topology: Loading topology 'system:topo:all'.
     Talking to the CMC service, please wait
    -----------------------------------------------
     Domain: outdoor.orbit-lab.org
     Node: node3-6.outdoor.orbit-lab.org   	 State: NOT REGISTERED
     Node: node3-3.outdoor.orbit-lab.org   	 State: POWEROFF
     Node: node2-10.outdoor.orbit-lab.org    State: POWEROFF
     Node: node1-10.outdoor.orbit-lab.org    State: POWEROFF
     Node: node1-8.outdoor.orbit-lab.org   	 State: POWERON
     Node: node1-6.outdoor.orbit-lab.org   	 State: POWERON
     Node: node3-2.outdoor.orbit-lab.org   	 State: POWEROFF
     Node: node3-1.outdoor.orbit-lab.org   	 State: POWEROFF
     Node: node1-3.outdoor.orbit-lab.org   	 State: POWERON
     Node: node3-5.outdoor.orbit-lab.org   	 State: POWEROFF
     Node: node2-5.outdoor.orbit-lab.org   	 State: NOT REGISTERED
     Node: node1-2.outdoor.orbit-lab.org   	 State: POWERON
    -----------------------------------------------
     INFO Experiment: Switching ON resources which are OFF
     INFO EXPERIMENT_DONE: Event triggered. Starting the associated tasks.
     INFO NodeHandler: 
     INFO NodeHandler: Shutting down experiment, please wait...
     INFO NodeHandler: 
     INFO run: Experiment default_slice-2012-10-14t14.42.15-04.00 finished after 0:6
    

  2. It is recommended that the node be in the POWEROFF state prior to any experiment process. If the node is in the POWERON state you can use the omf tell command to get the node into the off state.

    omf tell

    OMF command to control the power state/reset the nodes.

    Usage: omf tell

    user@console:omf tell
    Switch ON/OFF and reboot the nodes in a testbed
    Usage:
          omf tell [-h] -t TOPOLOGY -a ACTION [-c AGGREGATE]
     
          With: 
          -h, --help           print this help message
     
          -a, --action ACTION  specify an action
          ACTION:
          on              turn node(s) ON
          offs            turn node(s) OFF (soft)
          offh            turn node(s) OFF (hard)
          reboot          reboots node(s) (soft)
          reset           resets node(s) (hard)
     
          -h, --help                print this help message
          -t, --topology TOPOLOGY   a valid topology file or description (MANDATORY)
          -c, --config AGGREGATE    use testbed AGGREGATE
     
          Some Examples: 
                        omf tell -a reset -t node1-1.grid.orbit-lab.org
                        omf tell -a on -t system:topo:all -c grid
                        omf tell -a reboot -t node1-1
                        omf tell -a offh -t [1..2,1..5]
                        omf tell -a offh -t system:topo:all
                        omf tell -a reset -t system:topo:imaged
    

    The commands are: on, offh (equivalent to pulling out the power cord), offs (software shutdown), reboot (software reboot) and reset (hardware reset).

    Example: turn off node1-1 on the outdoor domain

    user@console.outdoor:~# omf tell -a offh -t node1-1
    
     INFO NodeHandler: OMF Experiment Controller 5.4 (git 3fb37b9)
     INFO NodeHandler: Reading configuration file /etc/omf-expctl-5.4/services.yaml
     INFO NodeHandler: Add domain http - http://internal1.orbit-lab.org:5054/
     INFO NodeHandler: Add domain http - http://repository1.orbit-lab.org:5054/
     INFO NodeHandler: Slice ID: default_slice (default)
     INFO NodeHandler: Experiment ID: default_slice-2014-09-30t00.24.28.504-04.00
     INFO NodeHandler: Message authentication is disabled
     INFO Experiment: load system:exp:stdlib
     INFO property.resetDelay: resetDelay = 230 (Fixnum)
     INFO property.resetTries: resetTries = 1 (Fixnum)
     INFO Experiment: load system:exp:eventlib
     INFO Experiment: load system:exp:winlib
     INFO Experiment: load system:exp:tell
     INFO property.nodes: nodes = "node1-1" (String)
     INFO property.command: command = "offh" (String)
    
    Talking to the CMC service, please wait
    -----------------------------------------------
     Node: node1-1.outdoor.orbit-lab.org   	 Reply: OK
    -----------------------------------------------
    
     INFO EXPERIMENT_DONE: Event triggered. Starting the associated tasks.
     INFO NodeHandler: 
     INFO NodeHandler: Shutting down experiment, please wait...
     INFO NodeHandler: 
     INFO run: Experiment default_slice-2014-09-30t00.24.28.504-04.00 finished after 0:10
    

  3. Once node set is on an POWEROFF state, load an image with omf load command

    omf load

    Load command is used to put an image onto the hard disk of the node.

    Usage: omf load

    Install a given disk image on the nodes in a testbed
    Usage:
          omf-5.4 load [-h] [-i IMAGE_PATH] [-o TIMEOUT] [-t TOPOLOGY] [-c AGGREGATE]
     
          With: 
          -h, --help                print this help message
          -c, --config AGGREGATE    use testbed AGGREGATE
          -t, --topology TOPOLOGY   a valid topology file or description (defaults to 'system:topo:all')
                                    (if a file 'TOPOLOGY' doesn't exist, interpret it as a comma-separated list of nodes)
          -i, --image IMAGE         disk image to load
                                    (default is 'baseline.ndz', the latest stable baseline image)
          -o, --timeout TIMEOUT     a duration (in sec.) after which imageNodes should stop waiting for
                                    nodes that have not finished their image installation
                                    (default is 800 sec, i.e. 13min 20sec)
              --outpath PATH        Path where the resulting Topologies should be saved
                                    (default is '/tmp')
              --outprefix PREFIX    Prefix to use for naming the resulting Topologies
                                    (default is your experiment ID)
     
          Some Examples: 
                        omf-5.4 load
                        omf-5.4 load -t system:topo:all -i baseline-2.4.ndz
                        omf-5.4 load -t omf.nicta.node1 -i wireless-2.6.ndz
                        omf-5.4 load -t omf.nicta.node1,omf.nicta.node2 -i baseline.ndz -o 400
                        omf-5.4 load -t system:topo:circle -i my_Own_Image.ndz
                        omf-5.4 load -t my_Own_Topology -i baseline-2.2.ndz -t 600 -c grid
                        omf-5.4 load -t my_Own_Topology --outpath ./ --outprefix my_Own_Prefix
    

    Two important arguments are TOPOLOGY describing the set of nodes one wishes to image , and !IMAGE specifying the name of the image one wants to load the nodes with. If the imaging process does not does not finish within the default timeout period, that period can be increase by using the -o flag (e.g. -o 1600). Typical command to load both nodes of sandbox 1 with the baseline image would look like:

    Example: omf load-i baseline.ndz -t node1-1

    username@console.sb3:~$ omf load -i baseline.ndz -t node1-1
    
    DEBUG FQDN:console.sb3.orbit-lab.org:
     INFO NodeHandler: OMF Experiment Controller 5.4 (git 861d645)
     INFO NodeHandler: Reading configuration file /etc/omf-expctl-5.4/services.yaml
     INFO NodeHandler: Add domain http - http://internal1.orbit-lab.org:5054/
     INFO NodeHandler: Add domain http - http://repository1.orbit-lab.org:5054/
     INFO NodeHandler: Add domain http - http://external1.orbit-lab.org:5054/
     INFO NodeHandler: Slice ID: pxe_slice
     INFO NodeHandler: Experiment ID: pxe_slice-2018-08-08t13.41.37.814-04.00
     INFO NodeHandler: Message authentication is disabled
     INFO Experiment: load system:exp:stdlib
     INFO property.resetDelay: resetDelay = 230 (Fixnum)
     INFO property.resetTries: resetTries = 1 (Fixnum)
     INFO Experiment: load system:exp:eventlib
     INFO Experiment: load system:exp:winlib
     INFO Experiment: load system:exp:imageNode
     INFO property.nodes: nodes = "node1-1" (String)
     INFO property.image: image = "baseline.ndz" (String)
     INFO property.domain: domain = "sb3.orbit-lab.org" (String)
     INFO property.outpath: outpath = "/tmp" (String)
     INFO property.outprefix: outprefix = "pxe_slice-2018-08-08t13.41.37.814-04.00" (String)
     INFO property.timeout: timeout = 800 (Fixnum)
     INFO property.resize: resize = nil (NilClass)
     INFO Topology: Loaded topology 'system:topo:registered'.
     INFO property.resetDelay: resetDelay = 100 (Fixnum)
     INFO Experiment: Resetting resources
     INFO stdlib: Waiting for nodes (Up/Down/Total): 0/1/1 - (still down: node1-1.sb3.orbit-lab.org) [0 sec.]
     INFO stdlib: Waiting for nodes (Up/Down/Total): 0/1/1 - (still down: node1-1.sb3.orbit-lab.org) [10 sec.]
     INFO stdlib: Waiting for nodes (Up/Down/Total): 0/1/1 - (still down: node1-1.sb3.orbit-lab.org) [20 sec.]
     INFO stdlib: Waiting for nodes (Up/Down/Total): 0/1/1 - (still down: node1-1.sb3.orbit-lab.org) [30 sec.]
     INFO stdlib: Waiting for nodes (Up/Down/Total): 0/1/1 - (still down: node1-1.sb3.orbit-lab.org) [40 sec.]
     INFO stdlib: Waiting for nodes (Up/Down/Total): 0/1/1 - (still down: node1-1.sb3.orbit-lab.org) [50 sec.]
     INFO exp: Progress(0/0/1): 0/0/0 min(node1-1.sb3.orbit-lab.org)/avg/max (59) - Timeout: 790 sec.
     INFO ALL_UP: Event triggered. Starting the associated tasks.
     INFO BRING_UP: Event triggered. Starting the associated tasks.
     INFO Experiment: Bringing up resources
     INFO exp: Progress(0/0/1): 50/50/50 min(node1-1.sb3.orbit-lab.org)/avg/max (59) - Timeout: 780 sec.
     INFO exp: Progress(0/0/1): 80/80/80 min(node1-1.sb3.orbit-lab.org)/avg/max (59) - Timeout: 770 sec.
     INFO exp: Progress(1/0/1): 100/100/100 min()/avg/max (59) - Timeout: 760 sec.
     INFO exp:  -----------------------------
     INFO exp:  Imaging Process Done
     INFO exp:  1 node successfully imaged - Topology saved in '/tmp/pxe_slice-2018-08-08t13.41.37.814-04.00-topo-success.rb'
     INFO exp:  -----------------------------
     INFO EXPERIMENT_DONE: Event triggered. Starting the associated tasks.
     INFO NodeHandler:
     INFO NodeHandler: Shutting down experiment, please wait...
     INFO NodeHandler:
     INFO NodeHandler: Shutdown flag is set - Turning Off the resources
     INFO run: Experiment pxe_slice-2018-08-08t13.41.37.814-04.00 finished after 1:44
    
    

    If the node is in the NOT REGISTERED state, you may need to wait for it to recover the POWEROFF state (it some times requires a few moments for the services to sync up). If the node takes more than 60 seconds to come out of the NODE NOT AVAILABLE state please report it to an administrator.

Provision SB1 nodes

So, for our experiment on sb1, run the following:

  username@console:~$ omf stat -t all
  username@console:~$ omf tell -t all -a offh
  username@console:~$ omf load -t all -i baseline20.04.ndz

4. Turn the nodes on

At this point the nodes' disks are imaged with the baseline image and need to be turned back on before proceeding. Use the omf tell command to turn the nodes on and give them a couple of minutes to boot, then check their status with omf stat.

Turn the Nodes ON

To turn the nodes on use omf tell command:

omf tell

OMF command to control the power state/reset the nodes.

Usage: omf tell

user@console:omf tell
Switch ON/OFF and reboot the nodes in a testbed
Usage:
      omf tell [-h] -t TOPOLOGY -a ACTION [-c AGGREGATE]
 
      With: 
      -h, --help           print this help message
 
      -a, --action ACTION  specify an action
      ACTION:
      on              turn node(s) ON
      offs            turn node(s) OFF (soft)
      offh            turn node(s) OFF (hard)
      reboot          reboots node(s) (soft)
      reset           resets node(s) (hard)
 
      -h, --help                print this help message
      -t, --topology TOPOLOGY   a valid topology file or description (MANDATORY)
      -c, --config AGGREGATE    use testbed AGGREGATE
 
      Some Examples: 
                    omf tell -a reset -t node1-1.grid.orbit-lab.org
                    omf tell -a on -t system:topo:all -c grid
                    omf tell -a reboot -t node1-1
                    omf tell -a offh -t [1..2,1..5]
                    omf tell -a offh -t system:topo:all
                    omf tell -a reset -t system:topo:imaged

The commands are: on, offh (equivalent to pulling out the power cord), offs (software shutdown), reboot (software reboot) and reset (hardware reset).

Example: turn off node1-1 on the outdoor domain

user@console.outdoor:~# omf tell -a offh -t node1-1

 INFO NodeHandler: OMF Experiment Controller 5.4 (git 3fb37b9)
 INFO NodeHandler: Reading configuration file /etc/omf-expctl-5.4/services.yaml
 INFO NodeHandler: Add domain http - http://internal1.orbit-lab.org:5054/
 INFO NodeHandler: Add domain http - http://repository1.orbit-lab.org:5054/
 INFO NodeHandler: Slice ID: default_slice (default)
 INFO NodeHandler: Experiment ID: default_slice-2014-09-30t00.24.28.504-04.00
 INFO NodeHandler: Message authentication is disabled
 INFO Experiment: load system:exp:stdlib
 INFO property.resetDelay: resetDelay = 230 (Fixnum)
 INFO property.resetTries: resetTries = 1 (Fixnum)
 INFO Experiment: load system:exp:eventlib
 INFO Experiment: load system:exp:winlib
 INFO Experiment: load system:exp:tell
 INFO property.nodes: nodes = "node1-1" (String)
 INFO property.command: command = "offh" (String)

Talking to the CMC service, please wait
-----------------------------------------------
 Node: node1-1.outdoor.orbit-lab.org   	 Reply: OK
-----------------------------------------------

 INFO EXPERIMENT_DONE: Event triggered. Starting the associated tasks.
 INFO NodeHandler: 
 INFO NodeHandler: Shutting down experiment, please wait...
 INFO NodeHandler: 
 INFO run: Experiment default_slice-2014-09-30t00.24.28.504-04.00 finished after 0:10

5. Run your experiment

In this example, our "experiment" will be to use one node as a wireless access point, which the other node will connect to. This is meant to demonstrate the basic way in which experimenters interact with testbed resources, along with some basic skills which will be useful during your use of the testbed.

Preliminary steps

  1. First, we want to make sure that the wireless interfaces on both nodes are on. By default, wireless interfaces on ORBIT nodes are disabled to reduce RF noise for experiments. On both nodes, run ip a to list the current network interfaces. You should see something like
    1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
        link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
        inet 127.0.0.1/8 scope host lo
           valid_lft forever preferred_lft forever
        inet6 ::1/128 scope host
           valid_lft forever preferred_lft forever
    2: DATA1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
        link/ether 70:8b:cd:bc:82:8d brd ff:ff:ff:ff:ff:ff
        inet6 fe80::728b:cdff:febc:828d/64 scope link
           valid_lft forever preferred_lft forever
    3: CTRL: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
        link/ether 70:8b:cd:bc:82:8c brd ff:ff:ff:ff:ff:ff
        inet 10.11.1.1/16 brd 10.11.255.255 scope global dynamic CTRL
           valid_lft 5170sec preferred_lft 5170sec
        inet6 fe80::728b:cdff:febc:828c/64 scope link
           valid_lft forever preferred_lft forever
    
    These are the default wired interfaces available on all ORBIT nodes: CTRL is the interface that is used to connect to the nodes from the console. It is also the interface over which internet traffic is routed. Note: be very careful when modifying the CTRL interface— you may make your node inaccessible over ssh.

You can also see the DATA interface. This interface is meant to be configured as part of experiments, which is why it does not have an IP address.

If we run iw list to list wireless interfaces, we should see that there are currently no wireless interfaces. First we must check what wireless devices are present to determine which driver module to load. Run lshw -c network to list network devices available on the node. You should see in the output that there is an AR928X wireless network card. For this particular card, we need to run the following to load the proper driver: modprobe ath9k.

Now, we should be able to see the wireless interface in the output of the ip and iw commands:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
2: DATA1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
    link/ether 70:8b:cd:bc:82:8d brd ff:ff:ff:ff:ff:ff
    inet6 fe80::728b:cdff:febc:828d/64 scope link 
       valid_lft forever preferred_lft forever
3: CTRL: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
    link/ether 70:8b:cd:bc:82:8c brd ff:ff:ff:ff:ff:ff
    inet 10.11.1.1/16 brd 10.11.255.255 scope global dynamic CTRL
       valid_lft 6797sec preferred_lft 6797sec
    inet6 fe80::728b:cdff:febc:828c/64 scope link 
       valid_lft forever preferred_lft forever
4: wlp3s0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 00:15:6d:84:3f:20 brd ff:ff:ff:ff:ff:ff

Make sure you have enabled the wireless interface on both nodes in the sandbox. Now, use the ip command to bring up the new wireless interface:

  root@node1-1:~# ip link set wlp3s0 up

The interface is now running, but it isn't connected to any networks. We can use either node to scan for the available networks, to ensure that we don't start a new network with the same ssid as an existing one. Running iw dev wlp3s0 scan will print out all available information about all available networks (make sure to substitute in the name of your wireless interface if it is different). To find the exact information we're looking for, we can use the grep utility: iw dev wlp3s0 scan | grep SSID. Grep has many capabilities, but we can see it's simplest use case here: it outputs lines containing a search string. We have also taken advantage of the pipe utility provided by the linux command line to feed the output of one command into another.

Set up Access Point

We will use node1-1 as the access point.

  1. First install hostapd and dnsmasq on node1-1:
      root@node1-1:~# apt install hostapd dnsmasq
    
    You'll see some error messages because dnsmasq is unable to start automatically. That's ok for now.

  1. Now we need to configure the services we just installed. We'll start with hostapd, the service that creates the access point. Open a file called hostapd.conf in /etc/hostapd/ using your editor of choice. Nano is a good option for beginners:
      root@node1-1:~# nano /etc/hostapd/hostapd.conf
    
    Note the commands listed at the bottom of the nano interface, especially exit and write out (save to file). The ^ in the command stands for control. So to save your changes and exit, you would press CTRL+O then CTRL+X.

Enter the following into the new file, making sure to change the first line if your wireless interface has a different name:

interface=wlp3s0
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
ctrl_interface=/var/run/hostapd
ctrl_interface_group=0
ssid=hello-wireless
hw_mode=g
channel=1
beacon_int=100
dtim_period=2
max_num_sta=20
rts_threshold=-1
fragm_threshold=-1
auth_algs=1
ignore_broadcast_ssid=0
wpa=2
wpa_passphrase=t0pS3cr3t
wpa_key_mgmt=WPA-PSK
wpa_pairwise=CCMP

These parameters are mostly default values, but note in particular the ssid name and passphrase. We will need these to connect to the network. For an explanation of what these parameters do, you can read the example file /usr/share/doc/hostapd/examples/hostapd.conf.

  1. Now we will set up the configuration for dnsmasq, which is used to provide ip addresses to clients that connect to the access point. A configuration file already exists at /etc/dnsmasq.conf, although it doesn't have any configuration to start. Open the file to add the following lines:
      bogus-priv
      bind-interfaces
      listen-address=192.168.100.1
      dhcp-range=192.168.100.50,192.168.100.150,2h
    
    This is a very minimal configuration, but it should be all we need.
  1. You can see we're telling dnsmasq to listen on the ip address 192.168.100.1, but we haven't put that address on our wireless interface yet. We can do that with the following command:
      root@node1-1:~# ip addr add 192.168.100.1/24 dev wlp3s0
    
  1. Now we can start the services. We have to first enable hostapd, which is disabled after you first install it.
      root@node1-1:~# systemctl unmask hostapd.service
      root@node1-1:~# systemctl start hostapd.service
      root@node1-1:~# systemctl start dnsmasq.service
    

Connect to Access Point

  1. First, verify that you can see the "hello-wireless" network from node1-2 by running the prior command to scan for interfaces and grepping for SSID.
  1. We'll use a utility called wpa_supplicant to connect to the access point. Run the following to install it:
      root@node1-2:~# apt install wpasupplicant
    
  1. To set up wpa_supplicant to connect to "hello-wireless", we'll use its built-in utility to modify the configuration file:
      root@node1-2:~# wpa_passphrase "hello-wireless" "t0pS3cr3t" > /etc/wpa_supplicant.conf
    
  1. Now we can connect to the network:
      root@node1-2:~# wpa_supplicant -B -i wlp3s0 -c /etc/wpa_supplicant.conf
    
  1. We need to manually request an ip address after connecting:
      root@node1-2:~# dhclient wlp3s0
    
  1. Verify that you can see an ip address in the 192.168.100.X ip space on the wireless interface. You should also be able to use the ping utility to test connectivity to node1-1 over the wireless interface:
      root@node1-2:~# ping 192.169.100.1
    
  1. As a final test , we can bring down the wired interfaces on node1-2 and ssh to it from node1-1 over the wireless network. Use the ip command to turn off first DATA1, then CTRL. You'll use the same command you used to bring the interfaces up, except now you'll use down instead of up. Make sure to use the correct interface names. After you bring down CTRL, your ssh connection will become unresponsive.

Now, from node1-1, ssh to root at the ip address that node1-2 had on the wireless interface. From there, you can bring the interfaces back up. This concludes the demo experiment.

6. (optionally) Save the node image

If you modified the baseline image and/or added software to it, you may want to save it into the repository before the end of your time slot.

How to save a disk image from one node of a Testbed

Once you have the image prepared the way you want it. On the node run:

ssh root@node1-1.sb1.orbit-lab.org
root@node1-1.sb1.orbit-lab.org: ./prepare.sh

This will remove udev rules (to prevent renaming of interfaces) and dump log files to lower the size of the image. It will also shutdown the node.

Once the node has been shutdown, to save the existing disk image on node (1,1) of the 'sb1' testbed, use the command:

 omf save -n node1-1.sb1.orbit-lab.org 
 # will save the current disk image on node [1,1] of the 'sb1' testbed

The output of this image saving process will look like the following:

INFO NodeHandler: OMF Experiment Controller 5.4 (git c005675)
INFO NodeHandler: Slice ID: pxe_slice 
INFO NodeHandler: Experiment ID: pxe_slice-2013-02-06t14.14.46-05.00
INFO NodeHandler: Message authentication is disabled
INFO Experiment: load system:exp:stdlib
INFO property.resetDelay: resetDelay = 230 (Fixnum)
INFO property.resetTries: resetTries = 1 (Fixnum)
INFO Experiment: load system:exp:eventlib
INFO Experiment: load system:exp:saveNode
INFO property.node: node = "node1-1.sb1.orbit-lab.org" (String)
INFO property.pxe: pxe = "1.1.6" (String)
INFO property.domain: domain = "grid.orbit-lab.org" (String)
INFO property.started: started = "false" (String)
INFO property.image: image = nil (NilClass)
INFO property.resize: resize = nil (NilClass)
WARN exp: Saving only works for ext2/ext3 partitions and MBR (msdos) partition tables. Saving any other filesystem or partition table type will produce a 0 byte image.
INFO Topology: Loading topology 'node1-1.sb1.orbit-lab.org'.
INFO Experiment: Resetting resources
INFO stdlib: Waiting for nodes (Up/Down/Total): 0/1/1 - (still down: node1-1.sb1.orbit-lab.org) [0 sec.]
.
.
.
INFO stdlib: Waiting for nodes (Up/Down/Total): 0/1/1 - (still down: node1-1.sb1.orbit-lab.org) [80 sec.]
INFO ALL_UP: Event triggered. Starting the associated tasks.
INFO node1-1.sb1.orbit-lab.org:  
INFO node1-1.sb1.orbit-lab.org: - Saving image of '/dev/sda' on node 'node1-1.sb1.orbit-lab.org'
INFO node1-1.sb1.orbit-lab.org:   to the file 'bob-node-node1-1.sb1.orbit-lab.org-2013-02-06-14-16-23.ndz' on host '10.10.0.42'
INFO node1-1.sb1.orbit-lab.org:  
INFO property.started: started = "true" (String)
INFO exp:  
INFO exp: - Saving process started at: Wed Feb 06 14:16:27 -0500 2013
INFO exp:   (this may take a while depending on the size of your image)
INFO Experiment: DONE!
INFO ExecApp: Application 'commServer' finished
INFO run: Experiment sb1_2008_07_20_23_38_04 finished after 9:19
done.

At the end of the saving process, you will have disk image file with the name: "bob-node-node1-1.sb1.orbit-lab.org-2013-02-06-14-16-23.ndz" in the directory "/mnt/images" on the machine with the host name "repository1". These information are all provided in the output displayed above.

You can then:

  • install this disk image on a set of nodes, using the instructions described in this tutorial. In this example, to install the newly created disk image on node (1,2):
      omf load -t node1-2.sb1.orbit-lab.org -i bob-node-node1-1.sb1.orbit-lab.org-2013-02-06-14-16-23.ndz
      # will install the disk image on node [1,2] of the 'sb1' testbed
    
    
  • only for the purpose of making a backup of your image: log into the "repository" machine, and copy your image to your backup storage.


Learning More

The above disk image saving process is implemented as a special orbit experiment. As such, its execution will results in a log file as with any other orbit experiment. This log file should look like this.

Each image created by the above saving process is a full hard-disk image, which can have arbitrary large file size (>200Mo or even more). As storage on the "frisbee" machine is limited, please be considerate in the number of images you save/use, and move any unused images to your own archival storage.

The generic omf command used above is the access point to control various ORBIT functions, such as the saving of a disk image from a node, with the sub-command "save". To see a list of all the available omf commands, you should type "omf help".

Finally, the complete available option/commands for the save function are given by "omf help save":

omf save --help
Save a disk image from a given node into an archive file
Usage:
      omf save -n NODE [-h] [-c AGGREGATE]
 
      With: 
      -h, --help          print this help message
      -n, --node NODE     a valid description of a single node (MANDATORY)
                          (no default here, you have to enter a node!)
      -r, --resize SIZE   Resizes the first partition to SIZE GB or to maximum size if SIZE=0 or
                          leave x percent of free space if SIZE=x%
 
      Some Examples: 
                    omf save -n node5-3.grid.orbit-lab.org
                    omf save -n node1-1.sb2.orbit-lab.org
 

Where to go from here

If you are still unsure what Orbit is, please read the FAQ and check other tutorials.

Attachments (5)

Download all attachments as: .zip

Note: See TracWiki for help on using the wiki.