Version 28 (modified by 6 months ago) ( diff ) | ,
---|
Self-Driving Vehicular Project
Team: Aaron Cruz [UG], Arya Shetty [UG], Brandon Cheng [UG], Tommy Chu [UG], Vineal Sunkara [UG], Divya Krishna [HS], Siddarth Malhotra [HS]
Advisors: Ivan Seskar and Jennifer Shane
Project Description & Goals:
Build and train miniature autonomous cars to drive in a miniature city.
RASCAL (Robotic Autonomous Scale Car for Adaptive Learning): Using the car sensors, offload image and control data onto a server node. This node will use a neural network that will train the vehicle to move around on its own given the image data it sees through its camera.
GitLab
Technologies: ROS (Robot Operating System), Pytorch
Week 1:
Progress:
- Familiarize with past summer's work:GitLab, RASCAL setup, Software Architecture
- Debug issue with RASCAL's pure pursuit
Week 2:
Progress:
- Setup X11 forwarding for GUI applications through SSH
- Visual odometry using Realsense Camera and rtabmap
- Streamline data pipeline that processes bag data (car camera + control data) into .mp4 video
- Detect ARUCO markers from a given image using Python & OpenCV libraries
- Setup Intersection server (node with GPU)
- Develop PyTorch MNIST model
- Trained "yellow thing" neural network
- Line up perspective drawing with camera to determine FOV
Week 3:
[Week 3 Slides]
Progress:
- Created web display assassin to eliminate web server when closing ROS
- Tested "yellow thing" model, great results
- SSHFS setup
- Calibrate Real Sense camera
- Created "snap picture" button on web display for convenience
- Developed python script to detect ARUCO marker and estimate camera position
Attachments (5)
- Detected.png (361.9 KB ) - added by 6 months ago.
- gitlab.png (134.3 KB ) - added by 6 months ago.
- SDC Week 2.png (406.3 KB ) - added by 6 months ago.
-
SDC 2024 WINLAB Poster.png
(2.1 MB
) - added by 4 months ago.
Poster
- SDC Open House 2024 .png (405.3 KB ) - added by 4 months ago.