wiki:Other/Summer/2023/SelfDriving

Version 18 (modified by BHC31, 11 months ago) ( diff )

Self Driving Vehicular Project

    Self Driving Vehicular Project

    WINLAB Summer Internship 2023

    Group Members: Adarsh Narayanan, Brandon Cheng, Christopher Sawicki, Joshua Menezes, Ruben Alias, Tommy Chu, Aleicia Zhu, Ranvith Adulla

    Project Objective

    This project has several objectives involving the WINLAB miniature intersection.

    RASCAL
    (Robotic Autonomous Scale Car for Adaptive Learning)
    MIMIC
    (Miniature Intersection Motion Imitation Car)
    Continue work on the miniature autonomous car hardware project developed last summer (see the project page here: https://www.orbit-lab.org/wiki/Other/Summer/2022/Hardware).

    The goal for this summer is to finish prototyping the hardware and develop drivers to control the car with ROS.
    If time allows, once the ROS integration is complete, we will be able to develop and test machine learning models to control the car.
    Develop a remote-controllable car which can be used to mimic the path taken by a car in the real intersection.

    For this platform, mechanum wheels will be used to allow for real-time corrections to the path.
    The platform will be developed using Robot Operating System (ROS).
    Students will need to prototype hardware and develop software to extract the path from video of the real intersection, translate that into a path for the miniature intersection, and produce a set of commands for the car.

    Week 1

    Week 1 Slides

    Week 2

    Week 2 Slides

    Week 3

    Week 3 Slides

    Week 4

    Week 4 Slides

    Week 5

    Week 5 Slides

    Week 6

    [ Week 6 Slides]

    Week 7

    [ Week 7 Slides]

    Week 8

    [ Week 8 Slides]

    Week 9

    [ Week 9 Slides]

    Week 10

    [ Week 10 Slides]

    Project Setup Instructions

    VM setup instructions:

    ROS setup instructions:

    • Follow these instructions to set up ROS Noetic: http://wiki.ros.org/noetic/Installation/Ubuntu
      • Note: any time you edit a startup file, like .bashrc, you need to logout and login (on VM you might need to power it off and on) for the effects to take place.

    Set up SSH key for gitlab

    • If you clone the repository with HTTPS, then you don't need to do this. However, then you will need to input your username and password every time you want to fetch or push from gitlab. To get around this, you can generate an SSH key pair and upload the public key to gitlab.
    • navigate to your .ssh directory by doing "cd ~/.ssh"
    • run the command "ssh-keygen".
    • It will prompt you to name the file. For example, "gitlab".
    • It will then prompt for a passphrase for the key. Leave it empty if you don't want to put in a password every time you use it, or put one for security if you prefer.
    • Two files called "gitlab" and "gitlab.pub" will be created in the ~/.ssh directory now. We need to upload the public key to gitlab.
    • Navigate to your .ssh directory and use the command "cat gitlab.pub" to print the contents of the file into the terminal. Copy all of the file, including the "sha-rsa" at the beginning and the username at the end.
    • Login to gitlab (the winlab specific gitlab! https://gitlab.orbit-lab.org) and click on your profile picture on the top right.
    • Go to SSH keys and add the public key in the text box. You should now be able to access orbit gitlab repositories through ssh.
    • NOTE: If you have previously cloned a repository using HTTPS instead of SSH, then you will need to update the remote URL. Follow this guide: https://docs.github.com/en/get-started/getting-started-with-git/managing-remote-repositories

    Project instructions:

    • Clone the desired repository. You can click "clone" on the repository page for the desired repository on gitlab (https://gitlab.orbit-lab.org/self-driving-car-2023). For example, "git clone git@…:self-driving-car-2023/upcar.git"
    • Make sure you set up ROS in your .bashrc file. You need to have "source /opt/ros/noetic/setup.bash" in it
    • You need to add the setup file for the catkin workspace of the project in your .bashrc file. To do this, first take note of the absolute path to the project directory. You will need to add "source path_to_catkin_ws/catkin_ws/devel/setup.bash" (replace path_to_catkin_ws with the actual absolute path on your system.)
    • One you are done changing the setup files, logout and login.
    • Install the joy package by following this tutorial: http://wiki.ros.org/joy/Tutorials/ConfiguringALinuxJoystick
      • The user needs to have input permission for ROS to read data from joystick inputs. To set this, do "sudo usermod -aG input username". -aG specifies adding an additional group (input) to a user (username)
        • Changing groups requires the user to log out and in for effects to take place
    • Install the realsense package (Add Link!)
    • To run a ROS node: use "rosrun package nodename". For example, "rosrun joy joy_node" to run the joystick package.
      • roscore must be running first by typing "roscore" in the terminal.
      • To run multiple processes at once, you can use Tmux (terminal multiplexer). More advanced uses can be found online, but the basic usage is as follows:
    • To run a ROS launch file, use "roslaunch package launchfile.launch". For example, "roslaunch rascal sim.launch".
    • on the first launch, or any time you change build files (CMakeLists, package.xml) you will need to navigate to the catkin workspace directory and run "catkin_make".

    To run the simulation on a VM:

    • Joystick needs to be configured in virtualbox. If you are using mac, the VirtualBox must be run as sudo.
    • The joystick needs to be set. navigate to /dev/input. if you do "ls -a" in here, you should see js0 and js1 which are added by virtualbox by default, and then js2 if your controller is configured correctly. Run "sudo jstest /dev/input/js2" to test if it is working.
    • You need to open a port to be able to view the web display on the host machine of the VM.
      • Open virtualbox and go to the settings for the VM.
      • Go to network → Adapter 1 → make sure it is on NAT
      • click advanced → port forwarding → add a new port forwarding rule
      • Fill the following fields (you may need to scroll right): name: flask, Host port: 5001, Guest port: 5000
      • note: you can use any unused port instead of 5001. 5000 is used for the guest port as it is the default for flask.
      • you may need to restart the VM.

    Other Notes:

    • For MIMIC, which was built on ROS Melodic, any python files need to be marked as executable. To do this, run "sudo chmod +x path/to/file.py". This adds execute permission (+x) to the file.
    Note: See TracWiki for help on using the wiki.