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ABSTRACT

Detecting malicious users in dynamic spectrum access scenar-
ios is a crucial problem that requires an intrusion detection
system (IDS) that scans spectrum for malicious activities. In
this paper we design a spectrum scanning protocol that in-
corporates knowledge about the scanning effectiveness across
different bands, which can increase scanning efficiency. The
adversary, however, can also exploit such knowledge to its ad-
vantage. To understand the interplay underlying this prob-
lem, we formulate a Bayesian model, where the IDS faces a
scanning allocation dilemma: if the intruder has no knowl-
edge, then all the bands are under equal threat, while if the
intruder has complete knowledge, then less-protected bands
are more likely to be threatened. We solve this dilemma and
show the optimal IDS strategy switches between the optimal
response to these threats. Finally, we show that the strategy
might be sensitive to prior knowledge, which can be corrected
by adapted learning.

Index Terms— Spectrum scanning, Bayesian game, in-
trusion detection system

1. INTRODUCTION

Cognitive radio networks will support dynamic spectrum ac-
cess (DSA). However, in spite of the potential benefits for
DSA, the open nature of the wireless medium will make cogni-
tive radios a powerful tool for conducting malicious activities
or policy violations by secondary users [1]. Therefore, detect-
ing malicious users or unlicensed activities is a crucial prob-
lem facing DSA. The challenge of enforcing the proper us-
age of spectrum requires an intrusion detection system (IDS)
that will scan spectrum and identify anomalous activities [2].
Towards this objective, there have been several foundational
efforts involving signal processing techniques that can be ap-
plied to spectrum scanning. For example, in [3], the authors
presented methods for detecting a desired signal contained
within interference. Similarly, detection of unknown signals
in noise without prior knowledge of authorized users was
studied in [4]. Factors like noisy and fluctuating channels
were considered in [5]. Energy detection of a signal with ran-
dom amplitudes was studied in [6]. Even more, the impacts
brought by quantization and dynamic range differences were
surveyed in [7].

Since there are two agents with different goals (the IDS,
which aims to detect illegal spectrum usage; and the adver-
sary who intends to use the bands illegally), game theory is
the ideal tool to employ. In [8], readers can find a compre-
hensive survey of research that examines security and pri-
vacy problems in computer networks via game-theoretic ap-

proaches. Some relevant work includes: the protection of
a network under uncertain attack-type[9], jammer detection
[10], detection of mobile intruder [11], self-adaptation mech-
anisms for IDS [12], for heterogeneous networks of nodes
with non-correlated security assets [13], for detection of the
intruder with uncertainty about used application [14], for
dropping-packet attacks [15]. In [16] and [17], the authors
present a tiling-based scanning algorithm for detecting an in-
truder signal in a wide amount of bandwidth, which is directly
relevant to this paper.

The above literature, however, does not consider the dy-
namic interaction between the intruder, the IDS, and the
technical characteristics of the spectrum scanner across the
bands of interest. In particular, IDSs will have non-uniform
detection characteristics across large swaths of bandwidth–
a fact that can be exploited by both the intruder and the
IDS. In this paper we examine the problem of how knowl-
edge regarding the IDS detection capabilities across spectrum
bands can be incorporated into scanning protocol to increase
its efficiency. We also examine how such knowledge can be
used by the adversary to arrive at two extreme cases for the
knowledge the intruder might have: (a) complete knowledge
on the IDS’s technical characteristics (a smart intruder), and
(b) no knowledge (naive intruder). Further, we examine how
the IDS can adapt its belief about the intruder’s knowledge
during the scanning process.

The organization of this paper is as follows: in Section 2,
we formulate and solve a single time-slot scanning problem.
Then, in Section 3 we extend the formulation to incorporate
repeated scanning, where the scanning and intrusion strate-
gies are adapted through a Bayesian approach to incorpo-
rate the result of the previous time slot’s scanning. In Sec-
tion 4 implementation of the considered game is given using
a testbed of USRP N210s and USRP X310s. In Section 5, we
conclude the paper.

2. A SINGLE TIME SLOT SCANNING

We now formulate the problem of scanning and intruding
over a large swath of bandwidth. We assume the total band-
width consists of n bands. In our formulation, a signal can be
transmitted in one of the n bands by the intruder. The IDS
consists of a single sensor (scanner) that, at any time period,
can only scan one of the n bands. In this subsection we as-
sume that transmission and scanning are performed during a
single time slot.

Let the intruder transmit a signal in band i. Then, if the
sensor scans this band, the probability of the intruder’s de-
tection will be denoted qi, which depends on the sensor and
environment characteristics (e.g. non-uniform background in-



terference, or non-uniform profile for the sensor’s RF front-
end). If the sensor scans a band different than the band
being intruded upon, then the intruder is not detected (i.e.
detection probability is 0). For the sake of tractability, we
assume that the detection probability qi depends on SINR
(Signal-to-interference-plus-noise ratio) at the sensor. Fur-
ther, we assume that we have an expected received power
level associated with the intruder signal at the receiver (e.g.
we assume the intruder uses a known power, and is located
within a certain distance of the scanner). Thus, since SINR
depends on background noise and interference levels, which
can be different for different bands, the detection probability
qi also might vary with the band i.

The scanning strategy for the IDS may be thought of
as a vector x = (x1, . . . , xn) assigning the probability that
the scanner will scan each particular band. The strategy for
the intruder depends on his type, which in this case corre-
sponds to his knowledge about the IDS. If the intruder has
no knowledge about the IDS (i.e., the probabilities qi), then
his optimal strategy is to intrude on the bands in a uniformly
random way (i.e., with probability 1/n for each band). If the
intruder has complete knowledge of the IDS’s characteristics,
then his strategy is the probability vector y = (y1, . . . , yn)
assigning the probability (frequency) for the intruder to in-
trude in each of the bands. We assume that there is a priori
knowledge on the intruder’s type, namely, either the intruder
might be a smart adversary with probability γ1, or he might
be naive with probability γ0, or he might not be present at all
in the total swath of bandwidth with probability γ2. Thus,∑2

i=0 γi = 1.
We assume that all these probabilities are known to the

rivals. The payoff to the IDS is the detection probability,
i.e., vIDS(x,y) = γ1vI1(x,y) + γ0vI0(x), where vI1(x,y) =∑n

i=1 qixiyi and vI0(x) =
∑n

i=1 qixi/n are the detection
probability of the smart and naive types of the intruder. The
detection probabilities for each type of intruder correspond
to the intruder cost functions. The IDS wants to respond to
each intruder’s strategy by maximizing the detection proba-
bility (i.e., his payoff), while the intruder wants to respond to
each IDS’s strategy by minimizing the detection probability
(i.e., his cost function). Such rivals strategies are called best
response strategies, and the solution for the best response
strategy equations yields equilibrium strategies. Also, note
that a priori knowledge regarding the intruder type is em-
ployed, and thus the considered game is a Bayesian game
[18].

For the sake of simplicity, we assume that all of the bands
have different detection probabilities, i.e., qi 6= qj for i 6= j.
Without loss of generality, we can assume that the bands are
arranged in decreasing order by their detection probabilities
qi, i.e., q1 > q2 > . . . > qn. The following theorem gives the
equilibrium strategies explicitly. In particular, it shows that
the IDS always, outside of a switching line Γ for probabilities
(γ0, γ1) :

Γ = {(γ0, γ1) : L(γ0, γ1) := γ∗γ1/(1− γ∗)− γ0 = 0} ,

where γ∗ := n/(q1Q) with Q =
∑n

j=1(1/qj), has a unique
equilibrium strategy. The smart intruder has a unique equi-
librium if the probabilities (γ0, γ1) are located above the
switching line Γ. If these probabilities are located below the
switching line Γ, then the smart intruder has a continuum of
strategies equivalent to each other, i.e., they all return the

same cost. On the switching line, Γ, the IDS has a continuum
of equilibrium strategies that are all equivalent to each other,
while the intruder has a unique strategy.

Theorem 1 (a) If the probabilities (γ0, γ1) are located above
the switching line, i.e.,

L(γ0, γ1) > 0, (1)

then there is a unique equilibrium (x,y) given as follows:

xi = 1/(qiQ),
yi = (1/(qiQ)− γ0/n) /γ1 for i ∈ [1, n]

(2)

with the expected payoff to the IDS given as follows

vIDS = 1/Q,

and the same costs for either the smart or naive intruder,
i.e.,

vI1 = vI0 = 1/Q.
(b) If the probabilities (γ0, γ1) are located below the switch-

ing line, i.e.,
L(γ0, γ1) < 0, (3)

then there is a unique equilibrium scanning strategy x, and a
continuum of the smart intruder strategies y, where

x = (1, 0, . . . , 0),

yi

{
= 0, i = 1,

≤ γ0(q1 − qi)
nγ1qi

such that
∑n

j=2 yj = 1, i ∈ [2, n],

with the expected payoff to the IDS

vIDS = γ0q1/n,

and the costs to the smart and naive types of invader:

vI1 = 0,

and
vI0 = q1/n,

correspondingly.
(c) If the probabilities (γ0, γ1) are located on the switch-

ing line, i.e., L(γ0, γ1) = 0, then there is a unique smart
intruder’s strategy y given by (2), and a continuum of IDS
scanning strategies

xi =
{

1− ε
∑n

j=2(1/qj), i = 1,
ε/qi, i ∈ [2, n],

for any positive ε such that ε < 1/Q.

3. REPEATED SCANNING WITH ADAPTING
BELIEFS

In this section we extend the single time slot scanning prob-
lem to the case of multiple time slots as a repeated game in
time slots t = 1, 2, . . .. At the beginning of each time slot
the rivals can adapt their a priori probabilities. Denote by
γt

i , i ∈ [0, 2] for the time slot t, the adapted probabilities as-
sociated with the belief that there is either a smart or naive
intruder, or he is not present in the network, where γ1

i = γi,



i ∈ [0, 2]. Let (xt,yt) be a pair of equilibrium strategies at
time slot t, where (x1,y1) = (x,y) is given by Theorem 1.
The probability that the invader is not detected at time slot
t, if he is a smart adversary, is 1− vI1(xt,yt). Similarly, the
probability that the invader is not detected at time slot t,
when he is a naive adversary, is 1 − vI0(xt,yt). Then, by
Bayes’ theorem, the adapted beliefs for the time slot t+1 are
given as follows:

γt+1
i = γt

i (1− vIi(xt,yt))
γt

2 + γt
1(1− vI1(x1,y1)) + γ1

0(1− vI0(xt,yt)) , i = 0, 1,

γt+1
2 = γt

2
γt

2 + γt
1(1− vI1(x1,y1)) + γ1

0(1− vI0(xt,yt)) .

(4)

By (4), the inequality γt+1
2 > γt

2 is equivalent to the following
inequality γt

2 + γt
1(1− vI1(x1,y1)) + γt

0(1− vI0(xt,yt)) < 1.
This inequality clearly holds for any t. Thus, γt

2 is increasing
and upper-bound by 1. Thus, it converges, and, by (4), it
converges to 1 and, hence, γt

0 and γt
1 converge to zero, if the

a priori probability that the invader might not be present is
positive.

Using Theorem 1, the adapted probabilities (4) can be
given explicitly as follows:

(i) if L(γt
0, γ

t
1) > 0 then

γt+1
i = γt

i (1− 1/Q)
γt

2 + (γt
1 + γt

0)(1− 1/Q) , i = 0, 1,

γt+1
2 = γt

2
γt

2 + (γt
1 + γt

0)(1− 1/Q)) ,
(5)

(ii) if L(γt
0, γ

t
1) < 0 then

γt+1
0 = γt

0(1− q1/n)
γt

2 + γt
1 + γt

0(1− q1/n) ,

γt+1
i = γt

i

γt
2 + γt

1 + γt
0(1− q1/n) , i = 1, 2.

(6)

We separately consider two cases: (a) γ2 = 0, and (b) γ2 > 0.
Case (a): Let γ2 = 0, then, by (5), if (1) holds, then

scanning does not allow one to improve their knowledge re-
garding the intruder’s type, since γt+1

i = γt
i for i = 0, 1 and

any t. Let (6) hold. By (6), γt+1
0 < γt

0 and γt+1
1 > γt

0, and if
the condition of (ii) holds for any i, then γt

1 tends to 1, and γt
0

tends to zero. Since γ2 = 0, the condition of (ii) is equivalent
to γt

0 > γ∗. Thus, there is a t∗ such that γt∗−1
0 > γ∗ ≥ γt∗

0 ,
and the IDS can adapt his belief on the intruder’s type until
time slot t∗, after that his belief stabilizes.

Case (b): Let γ2 > 0. Then, while the condition of (i)
holds, the updates to both probabilities γt

i for i = 0, 1 are
decreasing, i.e. γt+1

i < γt
i for i = 0, 1. While if the condition

of (ii) holds, the updated probability γt
0 is decreasing, and

the updated probability γt
1 is increasing in such a way that

the sum γt
0 + γt

1 is decreasing.
Further, we note that, although the scanning parameters

depend continuously on the a priori probabilities, the sensor’s
optimal strategy consists only of two modes, and each of them
is the optimal response to a specific intruder type. Thus, the

Fig. 1. Power versus frequency profile for the artificial in-
terference signal used to control the detection probabilities
in our scanning experiment. The frequency axis is presented
in normalized baseband frequency [−π, π]. The actual band-
width spanned was 200 MHz.

IDS manages to solve this “running after two hares” problem
by scanning according to the most likely intruder type for
the current time slot, and then switching its scanning at an
appropriate time when the most-likely intruder type changes.

4. SCANNING EXPERIMENT RESULTS

In order to explore the behavior of our scanning strategies in a
realistic setting, we implemented the game using the ORBIT
wireless testbed[20]. Specifically, we used the ORBIT grid
nodes equipped with USRP software defined radio devices
for creating the intruding signal transmission as well as for
implementing the IDS.

Our IDS scanned a total bandwidth consisting of 200
MHz, starting from 600 MHz and ending at 800 MHz. The
IDS scanning and the intruding signal transmission were per-
formed using USRP N210 devices. Given the hardware lim-
itations associated with the USRP N210’s, the scan band-
width we used was 20 MHz, and thus the total bandwidth
of 200 MHz was divided into ten 20 MHz wide bands, with
different probabilities of detection for each band. In order to
emulate a non-homogenous RF environment, we introduced
artificial background interference (i.e. noise) so that we could
effectively control the detection probabilities across the dif-
ferent bands. Due to the bandwidth limitations associated
with the USRP N210 radio device, it was necessary for us
to implement our 200 MHz of artificial interference using a
different radio device. In this experiment, we decided to use
a USRP X310 software-defined radio to transmit our inter-
ference into the environment. The frequency-response profile
for our interference, in dBm scale, is shown on Figure 1. Here
we note that x-axis corresponds to 200 MHz of baseband fre-
quency, which has been normalized to [−π, π]. Using this
interference signal as the background interference, we effec-
tively controlled the detection probabilities for our 200 MHz



Fig. 2. An example run of the repeated spectrum game that
was implemented using USRP N210s and a USRP X310 on
the ORBIT wireless testbed. In the spectrum scanning game
presented, the white ovals illustrate the band associated with
the intruder’s location.

of interest. In particular, to estimate the detection proba-
bilities qi used in our formulation from Section 3, we deter-
mined the signal-to-interference levels (SINR) by separately
measuring the background interference alone, and the inter-
ference with the intruder signal present. In order to arrive at
detection probabilities, we used the formula given in [19]:

PD ≈ Q

(
Q−1(PF A)−

√
N
2 10 SINR

10

10 SINR
10 + 1

)
, (7)

where N is the number of time samples taken into the cal-
culation of SINR, and PF A is the desired probability of false
alarm, which in our case was 0.05. The resulting detection
probabilities ranged from 0.32 up to 0.76 in the less-interfered
bands.

In Figure 2, we present both the intruder and scanner
behavior for a short run of a repeated scanning game where
the beliefs regarding the intruder being present were adapted.
In this short experiment, the time slot duration was taken
to be 1 second. For each 20 MHz band that was scanned
by the IDS, a moving average 64-point FFT was performed.
The figure shows the total 200 MHz of bandwidth used in
the example game, where only the scanned bands and their
associated smoothed spectrum are presented with nonzero
power in the corresponding time slots. We have also depicted,
using white ovals mark, the bands that were chosen at each
time slot by the intruder. In particular, in the run of this
game that we present, during time slot 6 the intruder and
the IDS chose the same band, but the detection failed due
to the high levels of background interference present in that
band. Later, in time slot 9, the intruder and the IDS used the
same band, but in this case the intruder was caught in the

band centered around 630 MHz, which had less background
interference.

5. CONCLUSIONS

In order to support the scanning of large amounts of band-
width, we have outlined a new scanning paradigm that in-
corporates knowledge regarding the technical specifications
(i.e. detection probabilities) associated with a spectrum scan-
ning intrusion detection system. Since the adversary can also
leverage knowledge of the IDS technical characteristics to its
advantage, there is an inherent tradeoff between the bene-
fits that such knowledge provides the IDS and the benefits to
the intruder. To illustrate this tradeoff, we have formulated
a Bayesian game theoretical model between an intruder and
the scanner, where the knowledge the intruder has about the
IDS is associated with the knowledge of the IDS detection
probabilities.

In this game, the IDS has to solve a scanning allocation
dilemma: if the intruder is naive and has no knowledge of the
IDS’s capabilities, then all of the spectral bands are under an
equal threat (probabilistically); while, if the intruder is smart
and has complete knowledge of the IDS’s capabilities across
spectrum bands, then less-effective bands are under higher
threat of intrusion. We solve this problem for a scanning
game involving a single time slot, as well as for a repeated
scanning game in which the knowledge the intruder has re-
garding the IDS is adaptively updated. For the single time
slot scanning game, the equilibrium strategies are found ex-
plicitly, and it was shown that the IDS always, outside of a
switching line for probabilities (γ0, γ1) has a unique equilib-
rium, where γ0 is the IDS’s a priori probabilistic belief that
the intruder is naive, and γ1 is the IDS’s a priori probabilistic
belief that the intruder is smart. The smart intruder has a
unique equilibrium if probabilities (γ0, γ1) are located above
the switching line. If these probabilities are located below the
switching line, the smart intruder has a continuum of strate-
gies equivalent to each other, i.e., they all return the same
cost. On the switching line, the IDS has a continuum of equi-
librium strategies, while the intruder has a unique strategy,
which also equivalent to each other. The optimal IDS strat-
egy switches between the optimal response to each of these
threats, while the intruder can act more flexibly by tuning
his strategy continuously with respect to his knowledge of
the IDS characteristics. Due to its discontinuity, the strat-
egy might be sensitive to a priori knowledge, which can be
corrected by further adapted learning.

For the repeated, multiple time slot game, we provided
an explicit formulation for updating the IDS’s knowledge re-
garding the type of intruder it is facing using a Bayesian ap-
proach. We also proved the convergence of our adaptive learn-
ing strategies. We then demonstrated the implementation of
our scanning game and the associated adaptive-learning scan-
ning strategies using a testbed of software-defined radios. A
goal of our on-going work is to develop the suggested ap-
proach for an IDS consisting of multiple spectrum sensors,
where the detection probability can depend on both the char-
acteristics of each spectral band as well as on the mutual
geographical locations of the sensors and the intruder.
Acknowledgements: This material is based upon work
supported by the National Science Foundation under ECCS-
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