[[TOC(Other/Summer/2022/RC/*, depth=1, heading=Adversarial Machine Learning Against Voice Assistant Systems)]] = Adversarial Machine Learning Against Voice Assistant Systems = **WINLAB Summer Internship 2022** **Group Members:** Matt Kokolus, Catherine Mathews, Raymond Huang, David Man == Project Objective == This project aims to study the security of voice assistant systems under adversarial machine learning. Adversarial learning algorithms can generate adversarial audio samples to serve as the input of voice assistant systems, so as to fool the machine learning models in the system. In this project, students will focus on the white-box attack in the digital domain by generating adversarial samples using adversarial machine learning algorithms to attack a speaker recognition system based on X-Vector. The students will learn Python with Tensorflow Library. == Week 1 == * Defined project goals * Created plan of action for future weeks == Week 2 == * Read and studied paper: 'Practical Adversarial Attacks Against Speaker Recognition Systems' * Changed project objectives to focus on automating drone flight and testing with the ultimate goal of automating drone flight to potentially fly with voice commands * Became familiar with Yuneec Tornado H920 Pro Drone == Week 3 == * Began Udemy course: 'Complete Guide to Tensorflow for Deep Learning with Python' * Learned how to set up the drone (charging batteries, calibrating GPS, etc) * Practiced flying the drone == Week 4 == * Continued working on Udemy course to learn Tensorflow * Changed primary drone to Holy Stone hs700d == Week 5 == * Completed Udemy course * Read three papers to understand audio preprocessing: 'Real-time, Universal, and Robust Adversarial Attacks Against Speaker Recognition Systems', 'Adv Pulse: Universal, Synchronization-free, and Targeted Audio Adversarial Attacks via Sub-second Perturbations', and 'Enabling Fast and Universal Audio Adversarial Attack Using Generative Model' == Week 6 == * Researched MFCC feature extraction * Worked on voice recognition model based on Google's Mini Speech Commands dataset and the convolutional neural network (CNN) architecture == Week 7 == * Read and studied 'Hidden Voice Commands' paper * Learned about the adversarial workflow for generating hidden voice commands * Worked on code for inverse MFCC feature extraction