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1) Problem Definition
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Motivation



Our approach

?



Topology



2) GNU Radio 
Implementations



Simulated satellite transmitter



5G cell signal transmitter



Signal Overlap

https://docs.google.com/file/d/1QjiU6F0E_bXocTZLhqoTfsB3pvKlsIH7/preview
https://docs.google.com/file/d/1QjiU6F0E_bXocTZLhqoTfsB3pvKlsIH7/preview


Measurement SDRs

FFT Data



SINR Calculator



Performance Metrics



3) ORBIT Experiment 
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Time Diagram
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Experiments 

● 3000 measurements
● 15 locations



4) Machine Learning Model  



Neural Network as a Black Box
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Simplifying the Neural Network
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Simplifying the Neural Network
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Universal
Signal
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5) Data Preprocessing



A possible issue

● Dataset includes spatial coordinates as features,
○  represented as location codes: (e.g. 1_1,  1_2, …, 2_1, 2_2).

● Data Collection limited to few locations.
● Model incorrectly interprets these locations as distinct 

classes.



Noise Injectio n

● Introduce small random variations to location coordinates
● Encourages treating location coordinates in continuous form
● Combats overfitting



6)  Evaluation



Evaluation Metric

ACTUAL 
POWER

SIGNAL POWER RANGE (SPECIFIC LOCATION)



Accuracy in Known Locations

   
                                                              

Average accuracy: 91.44%                                 
Pretty Good!

   
                                                              

Train: 80%         Test: 20%                                 



Accuracy in Unknown Locations

   

                                                              
Average accuracy: 61.23%                                 
Location granularity is not 

enough!



7)  Conclusion



Conclusio
n

● Neural networks reliably estimate interference 
(4 fixed FFT sensors)

● High accuracy for known locations 
● Sparse training lacks spatial awareness
● Dense measurements could enable a universal 

estimator



Future Work



Thank You!


