AR Protein
 Visualization

Vir Vaidya, Samhitha Sangaraju, Alexander Kim August 7th, 2024

The Team

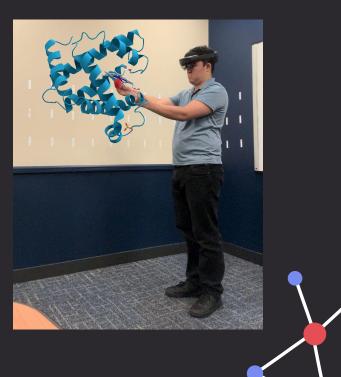
Alex

Morristown, NJ Rising Senior at Ohio State

Computer Science with a Minor in Communication

Samhitha

- Edison, NJ
 - Rising Junior at Rutgers
- Computer Science and Data Science with a Minor in Statistics


Vir

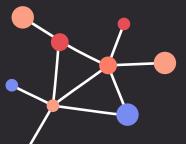
Princeton, NJ
Rising Senior at
Rutgers
Computer
Engineering with
minor Computer
Science

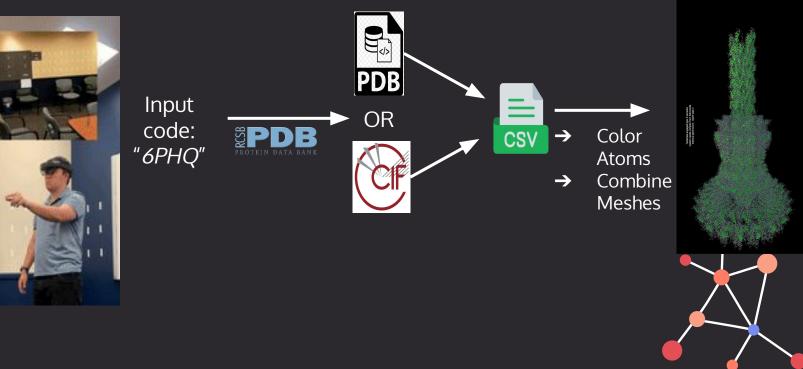
Motivation

- What is Augmented Reality?
 - Computer-generated image on a user's view of the real world
- Why Augmented Reality?
 - Viewing 3D data on a 2D screen hides many details
 - Immersive and interactive exploration of complex datasets

Project and Technology Overview

Goal: Develop an interactive Augmented Reality (AR) solution to visualize and analyze molecular proteins, enhancing understanding.


- Data Source: Rutgers Protein Data Bank
- Technology: Unity Game Engine with C# scripting, Microsoft Hololens 2



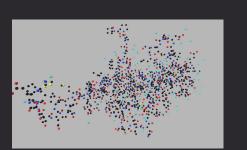
Program Breakdown

Web Scraping and CSV

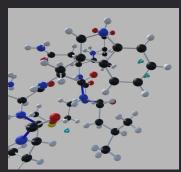
- Downloads file from database
- Filters important information
- Autonomous

Original File:

	_		_				_				_					_		
HELX_P HELX_P1	1	VAL		7		HIS		16		VAL			HIS					10
HELX_P HELX_P2	2	ASN		25		TYR		31		ASN			TYR			5		7
HELX_P HELX_P3	3	ASP		43		MET		63		ASP		43	MET		63			21
HELX_P HELX_P4	4	LYS		74		GLN		76		LYS			GLN			5		3
HELX_P HELX_P5	5	ALA		77		ARG		87	?	ALA		77	ARG		87	1		11
HELX_P HELX_P6	6	MET		101		THR		103		MET						5	?	3
HELX_P HELX_P7	7	ASN		104		ALA		123		ASN								
HELX_P HELX_P8	8	SER		124		GLU		129		SER								6
HELX_P HELX_P9	9	PRO		131		SER		150		PRO								
HELX_P HELX_P10	10	PRO	В	167		LYS		169		PRO						5	?	3
HELX_P HELX_P11	11	GLU		170		LEU		180		GLU						1		11
HELX_P HELX_P12	12	ALA		207	5	ALA	в	225	?	ALA	AB	207				1	?	19
HELX_P HELX_P13	13	HIS		6		LEU		12		HIS			LEU		12	1		7
HELX_P HELX_P14	14	TYR		29		GLU		46		TYR	AC	29	GLU			1	?	18
HELX_P HELX_P15	15	LEU		47		GLY		51	?	LEU			GLY	AC	51	5	?	5
HELX_P HELX_P16	16	LYS	С	72	?	VAL	С	76	?	LYS	AC	72	VAL	AC	76	5	?	5
HELX_P HELX_P17	17	ARG	С	83	?	THR	С	95	?	ARG	AC	83	THR	AC	95	1	?	13
HELX_P HELX_P18	18	ASN		108	?	LEU	С	111	?	ASN	AC	108	LEU	AC	111	5	?	4
HELX_P HELX_P19	19	SER	С	112	?	ARG	С	126	?	SER	AC	112	ARG	AC	126	1	?	15
HELX_P HELX_P20	20	ALA	С	129	?	GLU	С	143	?	ALA	AC	129	GLU	AC	143	1	?	15
HELX_P HELX_P21	21	ARG	С	156	?	ALA	С	160	?	ARG	AC	156	ALA	AC	160	5	?	5
HELX_P HELX_P22	22	SER	D	52	?	GLY	D	69	?	SER	AD	52	GLY	AD	69	1	?	18
HELX_P HELX_P23	23	SER	D	71	?	LYS	D	85	?	SER	AD	71	LYS	AD	85	1	?	15
HELX_P HELX_P24	24	VAL	D	88	?	SER	D	99	?	VAL	AD	88	SER	AD	99	1	?	12
HELX_P HELX_P25	25	ARG	D	100	?	LEU	D	108	?	ARG	AD	100	LEU	AD	108	1	?	9
HELX_P HELX_P26	26	SER	D	113	?	HIS	D	123	?	SER	AD	113	HIS	AD	123	1	?	11
HELX P HELX P27	27	LYS	D	151	?	ASN	D	154	?	LYS	AD	151	ASN	AD	154	5	?	4
HELX_P HELX_P28	28	LEU	D	155	?	LYS	D	166	?	LEU	AD	155	LYS	AD	166	1	?	12
HELX_P HELX_P29	29	ASP	D	190	?	LEU	D	194	?	ASP	AD	190	LEU	AD	194	5	?	5
HELX P HELX P30	30	ASN	D	199	?	TYR	D	207	?	ASN	AD	199	TYR	AD	207	1	?	9
HELX P HELX P31	31	GLU	E	50	?	ARG	E	64	?	GLU	AE	50	ARG	AE	64	1	?	15
HELX_P HELX_P32	32	GLY	E	103	?	GLY	E	114	?	GLY	AE	103	GLY	AE	114	1	?	12
HELX P HELX P33	33	ASN	E	127	?	ARG	E	140	?	ASN	AE	127	ARG	AE	140	1	?	14
HELX P HELX P34	34	THR	E	144	?	ARG	E	150	?	THR	AE	144	ARG	AE	150	1	?	7
HELX P HELX P35	35	ASP		15		TYR		33		ASP			TYR			1		19
HELX P HELX P36	36	ARG		71	2	ILE	F	81	2	ARG	AF	71	ILE	AF	81	1	2	11
HELX P HELX P37	37	ASP		20		MET		31		ASP		20	MET		31	ĩ		12
HELX P HELX P38	38	LYS		35	2	LYS	G	48	è	LYS		35	LYS		48	1		14
HELX P HELX P39	39	GLU		57	è	ASN		68	è	GLU		57	ASN			1	÷	12
HELX P HELX P40	40	SER		92		ARG				SER					111			
HELK_ HELK_F40	0	JEN		52	ŕ	0.10			ć	JEN	~0	12	010	~0		-	-	20



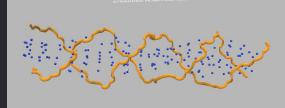
CSV File:


HELIX	7	16	AB		
HELIX	25	31	AB		
HELIX	43	63	AB		
HELIX	74	76	AB		
HELIX	77	87	AB		
HELIX	101	103	AB		
HELIX	104	123	AB		
HELIX	124	129	AB		
HELIX	131	150	AB		
HELIX	167	169	AB		
HELIX	170	180	AB		
HELIX	207	225	AB		
HELIX	6	12	AC		
HELIX	29	46	AC		
HELIX	47	51	AC		
HELIX	72	76	AC		
HELIX	83	95	AC		
HELIX	108	111	AC		
HELIX	112	126	AC		
HELIX	129	143	AC		
HELIX	156	160	AC		
HELIX	52	69	AD		

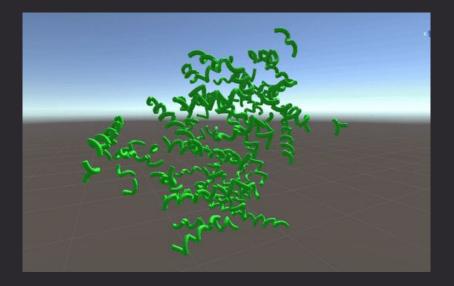
Generation and Interaction

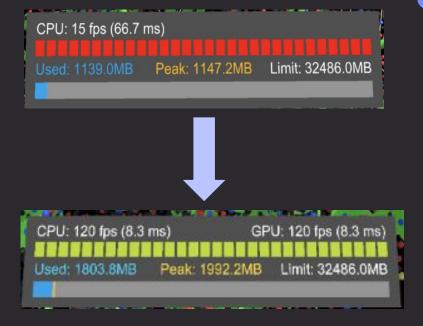
- Protein features from CSV
- Colors and Scales atoms
- Interaction Scripts attached

Atoms

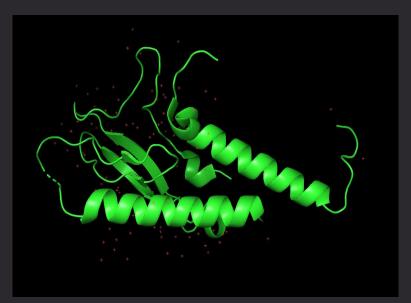

Bonds

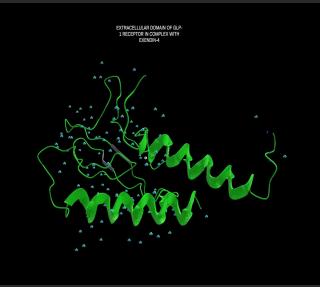
Beta Sheets



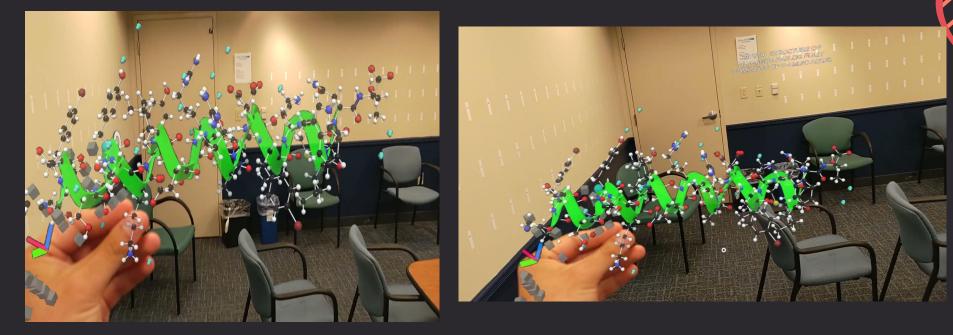


Challenges and Optimization Efforts

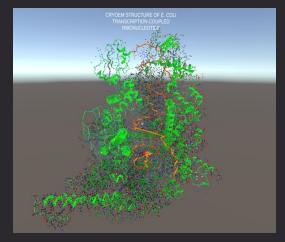

Jagged curved structures \rightarrow use splines to smooth out


Slow model rendering \rightarrow combine meshes of similar objects

Results

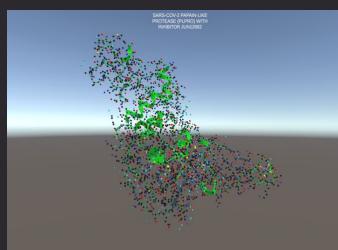


5OTT PyMol Model


50TT Model in Unity

Voice Command Feature

Future Plans


- Greater detail in RNA and Beta-Sheets implementation
- Optimized rendering for large proteins
- Faster 3D model generation and loading time of proteins
- Deploy visualizations to a mobile application
- Feedback from professionals

CryoEM Structure of E.Coli

Potential Project Applications

- Interactive Learning Experiences
- Drug Discovery and Manipulation
- Medical Training
- Public Health Awareness

SARS-CoV-2

This work was supported in part by RU-NB CSI Scarlet Vision with assistance from the RCSB PDB team, Ivan Seskar, Jennifer Shane, and Professors Wade Trappe and Ashley Guo.

Thank You!

