Resilient Edge-Cloud Autonomous Learning with Timely inferences

Haider Abdelrahman, James Chang, Lakshya Gour, Tanushree Mehta, Shreya Venugopal

Advisor: Prof. Anand Sarwate

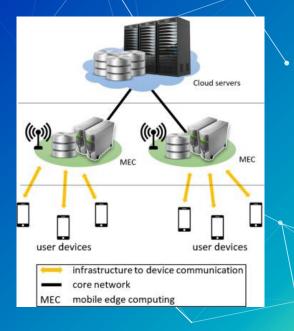
The Team

Haider Abdelrahman Electrical & Computer Engineering, 2026

Yunhyuk Chang Electrical & Computer Engineering, 2024

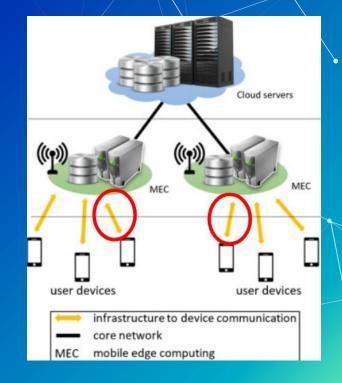
Lakshya Gour Computer Science + Math, 2026 Tanushree Mehta Electrical & Computer Engineering, 2026

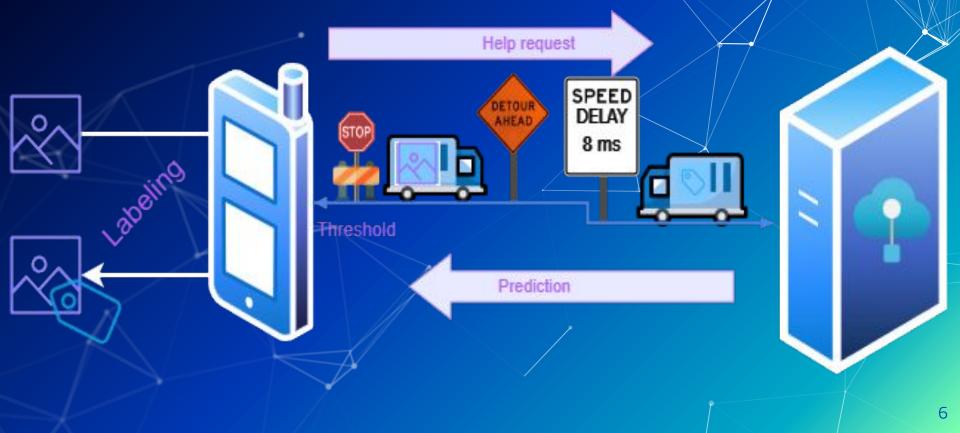
Shreya Venugopal Computer Science, Grad student, 2024


The Problem

Real-time machine learning models are getting more complex
Running them on less powerful (mobile) devices is becoming difficult b/c of the need for lower latency
Solution: MEC(Mobile-edge computing)

What is MEC (Mobile-Edge Computing)?

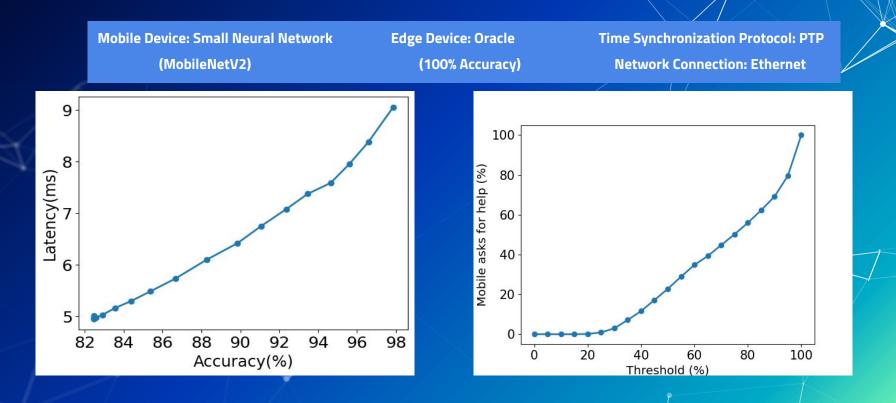

A network architecture that brings computation and storage capabilities closer to the end-users, reducing latency and improving real-time application performance.


Which part are we interested in?

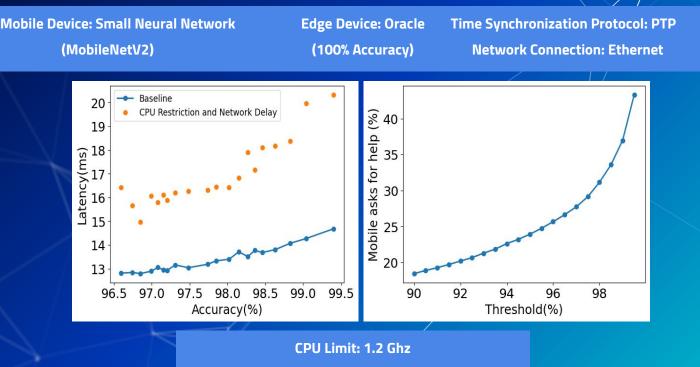
- **Threshold:** Confidence level at which mobile asks for help
- Asking for help: Inference confidence < Threshold, request help
- Average Latency: Total time to perform task

As you vary the threshold, how does the average latency change(over the dataset)?

Experimental Setup

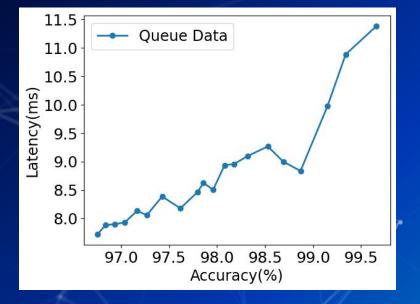

Models and Datasets

Data: CIFAR-10 Ο 10 categories \bigcirc Dataset size: 60,000 Ο Test set size: 10,000 Models: MobileNetV2 0 DenseNet 0

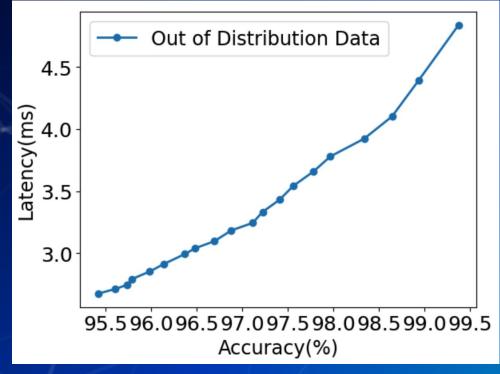

airplane	and a		X	*	1	2	-17	-	A.
automobile				-		-		-	-
bird	R	5			-	1		2	2
cat		5	5		1	2	Å,	the second	1
deer	1	1	R		Y	Y	1	-	
dog	17°	1		1			T?	1	1
frog	.			7 ?? !	٢	AND NO	37.		ST.
horse		(A	2	3	K TE	-3	h	6	1
ship	-	e de chie	-	Law .	-	2	12	-	6
truck		6				-	1		6

Findings

Baseline


CPU Restriction and Network Delay

Network: 8ms delay +/- 3ms


Queuing

Mobile Device: MobileNetV2 (85% Accuracy) Edge Device: Oracle (100% Accuracy) Time Synchronization Protocol: PTP Network Connection: Ethernet

 Queue at Edge
Mobile continues to inference on next image(multithreading) as it waits for the Edge response
Range of latency: 7-12ms

Out of Distribution Analysis

Mobile has less class capability than Edge
Separates unknown image to confused class
Range of latency: 2.5-5ms

Conclusions

- Implementing threshold:
 - Lower latency inference than using only the Edge device
 - Higher accuracy inference than using only the Mobile device
- Emulating real life by restricting the CPU speed & network has high impact on latency
- Introducing parallelization (multithreading) during inference allows for lower latency and quicker predictions

Potential Next Steps

- Continue to better emulate real life scenarios
- Better automate testing and data collection
- Explore more complex problems
 - Split Computing
 - Early Exiting
 - Multiple Clients and Servers
 - Different Queuing Policies

Acknowledgements Sponsor(s): nVerses Capital Project head: Prof. Anand Sarwate Special thanks: Prof. Waheed U. Bajwa, Ivan Seskar, Jenny Shane, Prof. Roy Yates, & all PhD students who helped! This material is based upon work supported by the National Science Foundation under grant no. CNS-2148104 and is supported in part by funds from federal agency and industry partners as specified in the Resilient & Intelligent NextG Systems (RINGS) program.