
Smart Intersection Cameras

Heneil Patel, Eleonore Pichon, Peter Wilmot

This work was supported in part by the NSF REU program and the donation from nVERSES CAPITAL



Project Inspiration/Idea

● Create a 3D model of an intersection
● 3D cameras on each corner

○ More coverage
○ 2D can only see front of object

● Why?
○ Detailed traffic/pedestrian info
○ Send details to smart cars

■ Allows “sight” around a corner/blockage
■ Allows for advanced tracking/prediction



Project Methods/Equipment

● Stitch multiple point clouds together
○ Cosmos scale intersection
○ Intel RealSense D415 Depth Cameras



Aruco Markers

● OpenCV
● 3D point projection
● Kabsch Algorithm



ROS/Rviz

● Allowed for easy streaming
○ pre-configurations for realsense camera

● Many pointcloud viewer options
● Inconsistent transformations
● Time/Resource consuming to install

Worse than it looks

90 degree rotation



Point cloud data transfer

● Ethersense
○ low resolution
○ hard to decode

● OpenCV / Pickle files / Sockets
○ smaller file size
○ easy to decode



Improving Marker Detection

● Different markers detected each frame
● Our solution:

○ Cache markers from last frame
○ Challenges with data types

■ Multidimensional arrays
■ Tuples
■ Lists

○ Up to 20 marker increase



More ArUco markers

● Almost perfect calibration
● Not practical for real life

○ Need realistic reference points



Sending multiple point cloud frames

● Loop:
○ Clients send files
○ Server downloads files
○ Viewer reads files

● Issues
○ Error when read and download 

same file at same time
○ Stops after few seconds of 

loading local and streamed files



Implementation after calibration

● Use PyTorch to analyze/modify images
○ YOLOv8

■ Deep Learning
■ Object Recognition



YOLOv8 Car Detection

● Train custom model for DIY cars
● 19 manually labeled images
● Many false positives
● Deployed on ultralytics hub mobile app
● Slower than regular YOLO (memory leak?)



Image Segmentation

● Coordinates of segmented “mask” in 2D
● Able to draw segmentation mask independently
● Allows for 3D object mapping



Future Improvements

● Fix point cloud video viewer
○ Lock/Unlock files for receiving/reading
○ Send frames directly
○ Implement queue/buffer

● Translate masks to 3D
● Combine masks into 3D mesh or bounding box

mesh


