
An Operational Semantics of Java 2 Access Control

Günter Karjoth
IBM Research

Zurich Research Laboratory
gka@zurich.ibm.com

Abstract

Java 2 Security enhanced with the Java Authentication
and Authorization Service (JAAS) provide sophisticated ac-
cess control features via a user-configurable authorization
policy. Fine-grained access control, code-based as well as
user-based authorization, and implicit access rights allow
the implementation of real-world policies, but of the cost
of increased complexity. In this paper we provide a formal
specification of the Java 2 and JAAS access control model
that helps remove ambiguities of the informal definitions. It
defines Java 2 access control in terms of an abstract ma-
chine, whose behavior is determined by a small set of tran-
sition rules. We illustrate the power of Java 2 access con-
trol by showing how commonly encountered authorization
requirements can be implemented in Java 2.

1 Introduction

Since JDK 1.2, the Java Software Development Kit provides
sophisticated access control features via a user-configurable
authorization policy and implemented by protection do-
mains [4]. When a Java class is loaded, it is associated with
a number of permissions based on the signer’s identity and
the loading location. Whenever a controlled resource is ac-
cessed, the runtime verifies that all classes in the method
call stack have sufficient permissions for accessing that re-
source. The recent Java Authentication and Authorization
Service (JAAS) augments JDK 1.2 with support to authen-
ticate the principal who runs the code and to enforce new
access controls on who was authenticated [8].

The Java computing platform and the Java Beans com-
ponent architecture make it feasible to build large-scale sys-
tems. Commercial application developers will need sophis-
ticated access control functionality that can deal with the
security requirements of such systems, for example in the
enterprise world. Vendors that implement Java 2 Security
and JAAS will need an unambiguous specification to imple-
ment access control correctly. In particular, when vendors

develop more efficient implementations to improve perfor-
mance, a formal specification is necessary to show its equiv-
alence.

This paper provides a formal model of Java 2 access con-
trols with JAAS that abstracts from possible implementa-
tions. It defines the basic data structures and gives an oper-
ational semantics in terms of abstract transitions. The model
enables software engineers to define precisely the required
security of their system, to develop efficient decision proce-
dures, and to show their correctness.

Stack inspection, an essential part of the Java 2 security
architecture, was described and analyzed first by Wallach
and Felten [10]. They use a belief logic to define the secu-
rity mechanisms as implemented in Netscape, which addi-
tionally allows permissions to be enabled/disabled one by
one. They also show that a new and more efficient form of
stack inspection, called “security-passing style”, is equiva-
lent to the original stack inspection system.

In [7], Kassab and Greenwald develop a formal model of
a beta version1 of JDK 1.2 security architecture. It is a state-
based model that uses access control matrices to model pro-
tection states. For each thread, there is a domain matrix rep-
resenting its protection state. Whenever a thread calls a new
method, the corresponding domain is added to the domain
matrix. The domain (row) is calculated from the policy ma-
trix taking the nesting of domains into account. To cope
with privileged code, they regard a domain matrix to behave
like a stack. Their access control decision function recog-
nizes corresponding marks and terminates evaluation of the
intersection of domains on the stack. However, permission
implication and the JAAS framework are not considered in
their model.

This paper is organized as follows. In Section 2, we re-
view the Java 2 access control model. Section 3 shows a for-
mal model of Java 2 access control combined with the JAAS
framework. In Section 4, we analyze the expressiveness of
Java 2 authorization. We present various policy implemen-

1Privileged code is based on thebeginPrivileged() and
endPrivileged() methods, which where replaced by thedoPrivileged
method in the final release of Java 1.2.

0-7695-0671-2/00 $10.00 � 2000 IEEE

tations that take advantage of principal hierarchies as well
as permission hierarchies. Finally, Section 5 concludes the
paper.

2 Java 2 Authorization

In Java 2, a set of policy files defines the authorization state
that determines whether a given request has to be consid-
ered authorized. Authorization is semi-static, as the au-
thorization state is already specified before the Java system
starts.2 Another policy can be loaded later via therefresh
method of the Policy object, but it is implementation-
dependent how this is done. In the way the policy files and
thus the authorization state can be changed, Java follows
the administration paradigm more closely than the owner
paradigm.

A Javasubject represents a grouping of related informa-
tion for a single entity, such as a person. Such informa-
tion includes the subject’s identities as well as its security-
related attributes, for example passwords and cryptographic
keys. Each identity is represented as aprincipal within the
subject. Examples of Java principals include names such as
e-mail addresses or employee numbers, groups such as de-
partments, or public keys that provide a very scalable name
representation. Principals bind names to a Subject.

The specification of access controls is based on static
properties of authorization units. Permissions, which are
access rights on resources, are granted to locations of code,
set of signers of code, and set of principals. Note that
permissions are granted to classes, which are static Java
code, and not to instances, which are instances of classes
[4, p. 67]. Only permissions that represent approvals can
be given. There are implicit access rights, as an ordering
on permissions and/or principals can be defined. Signers as
well as principals can be composed into compound entities
by set intersection, i.e. permissions are only granted if all
elements are present.

Threads are the active entities of a Java system. They
generate requests which are validated by the reference mon-
itor in accordance with a given access control policy. Au-
thorized requests are mediated to the corresponding receiver
object, whereas unauthorized requests have to be rejected.
Although a request is always issued by a thread, a thread
does not of itself constitute an authorization unit. Threads
execute in a context that is determined by the set of protec-
tion domains given by the chain of callers. Optionally, when
using JAAS, a Subject that can contain several principals is
associated with the thread.

2For optimization, a Java system might delay the instantiation of the
policy file until the first permission check. However, this may lead to a dif-
ferent behavior when the content of the policy file should change between
the time the policy class is instantiated and the time the first security check
is invoked [4, p. 67].

The access control model of Java 2 has many similar-
ities with those of CORBA, another well-established dis-
tributed object computing technology [6]. Security-aware
objects can exercise their own security policy by calling
a user-configurable access controller. CORBA rights as
well as Java permissions are assumed to be (globally) de-
fined and their semantics are precisely described, but imple-
mented within the objects. Both systems lack the support of
(standardized) policy management tools. Whereas Java 2 at
least provides a default policy implementation, the norma-
tive part of CORBA does not mandate the way policies are
managed.

But there are also a number of differences. Although
both systems use domains as a means to structure, they
use different ordering principles. In the CORBA security
model, objects that have common security requirements are
grouped in security policy domains. In Java, protection do-
mains are collections of principals with the same security
requirements. CORBA provides transparent access control
to security-unaware objects; all method invocations are me-
diated by invocation interceptors to enforce access control.
There is no concept of delegation in Java; only the immedi-
ate source of the object is considered.

3 Formal Model

A Java security policy is essentially an access control matrix
that describes code according to its characteristics (where
code came from, who signed it, and who runs it) and the
permission it is granted. The content of a matrix is deduced
from the policy file(s). The authorization state of a Java
system is derived from the above policy together with the
permission and principal hierarchies.

We assume that the permission hierarchy as well as the
principal hierarchy is partially ordered. Note that this as-
sumption must not be trivially true as the semantics of the
implies method of the classes that extend thePermission
class or implement thePrincipalComparator interface
is implementation-dependent. For example, a permission
class could define temporal or other non-static constraints.
In our specification, we abstract from the implementation of
implies methods of the presumed underlying Java system
but expect that evaluation is purely applicative.

In the following, we make use of a number of mathe-
matical terms and notations. In general,S shall denote a set
ands ranges over elements ofS. The termP (S) denotes the
power set ofS : P (S)� fX j X � Sg. Variable ˆs ranges over
subsets ofS and~s denotes sequences of elements ofS. A
sequence over a setS is a function fromN to S whose do-
main is an interval 1: : :n for some natural numbern. The
operator :: is used for adding one element to a sequence:

x :: hx1;x2;x3; : : : ;xni � hx;x1;x2;x3; : : : ;xni:

0-7695-0671-2/00 $10.00 � 2000 IEEE

We regard sequences to be like sets but imposed with an or-
der on its elements. In particular, set operations are defined
over sequences.

3.1 Protection Domains

A Java access control policy associates every code with a
set of permissions. It thus determines sets of classes, called
permission domains, whose instances are granted the same
set of permissions. Code is distinguished whether it comes
from a particular origin, signed with a specific set of public
keys, and executed by a specific set of principals. The rela-
tion between the origin and the set of public keys is called
code source. Principals are names associated with subjects,
the users of a computing service.

A protection domain is defined by a location (the code
base), a set of public keys (signer names), and a set of prin-
cipals:

D = L�P (K)�P (S):

A location is expressed by a URL; if it is omitted ornull, it
stands for “any location” and shall be denoted by the empty
string ε in the following. A signer is an alias for a public
key and a certificate that was used to sign the code. If there
are no signers then it stands for “any signer”. Principals are
class names that are associated with a subject. If there are
no principals then it stands for “any principal”. Depending
on the last characters of the URL, a location denotes either
class files and/or JAR files in a single directory or in all
subdirectories:

� "/" matches all class files (not JAR files) in the speci-
fied directory;

� "/*" matches all files (both class and JAR files) in the
specified directory;

� "/-" matches all files (both class and JAR files) in the
specified directory and recursively all files in subdirec-
tories contained in that directory.

Let � be a URL prefix relation that obeys the
above matching rules. For example, the URL
http://www.puzzles.com/- is a prefix of URL
http://www.puzzles.com/BurrPuzzles/*. In fact,
JDK 1.2 implements an even more rigorous compar-
ison algorithm [4, p. 43f] that takes the components
of a location into account (protocol, host, ports, and
anchor). To be a prefix of another URL, that URL
must have the same protocol and anchor, and, if spec-
ified, it must have the same ports. For example, URL
http://www.puzzles.com:9999/- is not a prefix of URL
http://www.puzzles.com/BurrPuzzles/*. In general,
URL matching is purely syntactic and, for example, does
not deal with proxies or redirects.

Principals are names associated with subjects. The setS
of principals is sorted by the classes that implement princi-
pals. Principal classes that implement (theimplies method
of) thePrincipalComparator interface induce a partial or-
der onS. For example, a group principal may imply a par-
ticular subject if that subject belongs to the group. We use
s) s0 to denote that principals implies principals0. This
order can be generalized into a partial order on sets of prin-
cipals:

ŝ) ŝ0 iff 8s0 2 ŝ0 : 9s 2 ŝ : s) s0.

A set of principals ˆs implies all principals of another set
ŝ0 if for any principal of set ˆs0 there is a principal of set ˆs
that implies that principal. Note that this relation obviously
holds if ŝ contains all principals of set ˆs0 (ŝ0 � ŝ).

Finally, we combine the partial orders on components
of domains into a partial orderv on domains. We say that
domainhl1; bk1; bs1i contains domainhl2; bk2; bs2i if l1 is a prefix
of l2, bk2 contains all keys ofbk1, andbs2 implies all principals
of bs1:

hl1; bk1; bs1i v hl2; bk2; bs2i iff l1 � l2^ bk1 � bk2^ bs2) bs1.

For example,hl; k̂;fs1gi v hl; k̂;fs1;s2gi because the prin-
cipal setfs1g of the left domain is a subset of the principal
setfs1;s2g of the right domain. Furthermore,hl; k̂;fs1gi v
hl; k̂;fs2gi if s2) s1 holds.

3.2 Permissions

Let R be the sorted set ofresources. In particular, el-
ements ofR model the resource types defined in the Java
APIs, such as files or network connections. LetT � P (R)
denote the set oftargets in a Java system. A target is a set
of resources of the same type. With each resource type,
there is associated a (possibly empty) set ofactions. Per-
missions usually comprise a target and an action. We fix
the set of permissions,P, to contain the special permission
AllPermission; let p range over permissions.

Permissions are ordered, and this order is used to infer
implicit access rights. However, this order relation is left
entirely up to each subclass of thePermission class. As
Java 2 defines aPermission class hierarchy, there is in
fact a family of relations, one for each supported resource
type. See, for example, the description for file permissions
[4, p. 52ff] and for socket permissions [4, p. 56ff]. Both
permission classes even define a suborder on targets (path
names and host names, respectively) and on the correspond-
ing actions. In general, one might say that a permissionp
implies another permissionp0 (p) p0) if both the target of
p contains the target ofp0 and the action ofp implies the
action of p0. For example, thejava.io.FilePermission
class is implemented such that for the same resource a write
permission implies a read permission. Above definition also

0-7695-0671-2/00 $10.00 � 2000 IEEE

implicitly states that it should not be possible that a permis-
sion of one class implies a permission of another class.

The semantics of permissions is thus modulo to the re-
spective resource types. Besides the properties of the partial
order on the permission hierarchy, there is the following ax-
iom:

8p 2 P : AllPermission) p

By definition,AllPermission permission implies all per-
missions [4, p. 65].

The family of implies relations on permissions must be
further extended to permission collections and to sets of per-
mission collections (Permissions). Only the latter rela-
tion is explicitly defined:

p̂) p iff 9p0 2 p̂ : p0) p.

A set of permissions ˆp implies a permissionp if there is a
permissionp0 in p̂ that implies permissionp.

3.3 Policy

The Java runtime maintains a mapping from code (classes
and objects) to their protection domains and then to their
permissions. Authorizations are granted to code sources
(origins and signers) and principals.

The system security policy file, possibly (additively)
combined with a user security policy file and JAAS pol-
icy file, sets the security policy of a Java system. A policy
file consists of a number of grant entries that are made up
of a code source and/or principals and the associated per-
missions. The set of grant entries in a policy maps each
declared domain to its permissions. All code that is consid-
ered part of the system core belongs to the system domain.
The system domain is granted all permissions.

A Java policyP = D ! P (P) maps domains to sets of
permissions. As a policy file may contain grant entries with
nested domains, we require thatP satisfy the transitive clo-
sure on relationv on domains, i.e. each nested domaind
contains the union of all permissions inP(d0) for every do-
maind0 that containsd:

(p 2 P(d)^d v d 0)� p 2 P(d0):

Note that all the definitions are additive, so permissions can
only be granted, not revoked.

Thus, each protection domain entry inP holds all of
its permissions defined by the current policy. Furthermore,
each protection domain encloses a set of classes whose in-
stances are granted the same set of permissions. The above
definition ensures that classes from different sources belong
to different domains even if they have the same permissions.

There are two predefined protection domains. All sys-
tem code is assumed to run in a domain that possesses all
permissions (AllPermission 2 P(system)). If there is no

protection domain that matches a newly loaded class, then
this class will be mapped to a protection domain that defines
a default policy, the original Java sandbox.

3.4 Threads

Threads are the active elements in Java that may execute
code from different sources and may be associated with
different principals (protection domains), and are thus re-
garded as the correct context for access control [3]. A thread
is a chain of multiple method invocations, and its effective
permissions are defined to be the intersection of the per-
missions of all methods involved in the call sequence. This
approach implements the least-privilege principle in that a
domain cannot gain additional permissions as a result of
calling more “powerful” domains, whereas a more power-
ful domain must lose its power when calling a less powerful
domain [3].

The effective permissions of a thread depend on the pro-
tection domains it crossed. Thus, if the call chain of a thread
contains code associated with protection domainsd1, d2,
andd3, the effective permissions of the thread (the most re-
cent method) are given byP(d1)\P(d2)\P(d3). Note that
the order in which domains are crossed is not relevant for
the access control decision.

The current (execution) context is entirely represented
by its current sequence of method invocations, where each
method is defined in a class that belongs to a protection do-
main [4, p. 92]. Or equivalently, a context is set up by the se-
quence of protection domains. Thus the context of a thread
may change whenever it calls a new method or returns from
the current method. Additionally, there are special meth-
ods that explicitly affect the current context. For example,
method javax.security.auth.Subject.doAs assigns
(additional) principals to current context, whereas method
java.security.AccessController.doPrivileged cre-
ates a new context that consists only of the protection do-
main of the method to be executed next. Whenever execu-
tion returns from those special methods, the old context will
be restored.

3.5 Security Context

Note that the order of domains is not relevant for the ac-
cess control decision as long as there is no static method
doPrivileged in the call chain. By callingdoPrivileged,
a piece of code tells the Java runtime system to ignore the
permissions of its callers and that it itself is taking respon-
sibility for exercising its permissions. However, the protec-
tion domains of the code that is subsequently called by the
“privileged” code are still considered in the access control
decision.

0-7695-0671-2/00 $10.00 � 2000 IEEE

The subject affiliated with the current access con-
trol context may have a number of associated principals
that were successfully authenticated. The static method
Subject.doAs(Subject s, PrivilegedAction a) as-
sociates a subject with the current access control context
and then executes the action.

The security context of a thread consists of a set (se-
quence) of protection domains (call sequence), the inherited
access control context, and a set of associated principals:

C = P (D)�P (D)�P (S):

Let ~d range over sequencesP (D) of protection domains
and letd̂ range over setsP (D) of protection domains. Let
C range over sequences of security contexts, where only
the security context added last will be used for permission
checking.

Let D(f ; ŝ) determine the protection domain of method
f under the set ˆs of current active principals. FunctionD is
total, i.e. if there is no grant entry in the policy file, function
D returns protection domainsandbox.

When a new thread is created, the initial call sequence
is given by the protection domainD(f) of the first method
f to be executed. Access control context and associated
principals are inherited from the parent thread.

Let ~d = hdn; : : : ;d2;d1i be the ‘current’ state of the call
sequence in a security context of a thread, wheredn is the
protection domain of the most recent called method. When
a stack frame makes a method callf , this creates a new
stack frame and updates the current security context:

h~d; d̂; ŝi :: C
call(f)
����! hD(f ; ŝ) :: ~d; d̂; ŝi :: C (1)

The updated security context of the thread is computed by
adding the protection domainD(f ; ŝ) of the called method
f using the currently assigned principals ˆs to the call se-
quence.

Enabling Privileges. When a stack frame calls the spe-
cial method doPrivileged(new PrivilegedAction()
...), this creates a new stack framef for therun method
of the inner class object.

hd :: ~d; d̂; ŝi :: C
doPrivileged(f)
�����������! (2)

hhD(f ; ŝ)i;fdg; ŝi :: hd :: ~d; d̂; ŝi :: C

Method f is performed with all of the permissions pos-
sessed by the caller, as determined by its protection domain
d. Note that the fact that the protection domaind of the call-
ing method becomes the new context of the thread prevents
code from acquiring more rights than they own themselves.

When a stack frame calls the special methoddoAs, this
creates a new access control context based on the current

access control contextc that is assigned the Subject-based
permissions

h~d; d̂; ŝi :: C
doAs(ŝ0; f)
�������! (3)

hhD(f ; ŝ0)i; ~d[d̂; ŝ0i :: h~d; d̂; ŝi :: C :

If the current context contains at least one protection do-
main (code source) that does not get more permissions via
the assigned principals, the set of effective permissions does
not increase. Subsequent method calls might only decrease
this set (intersection of the permissions of all protection do-
mains; least privilege principle).

When a stack frame calls the special method
doAsPrivileged, this also creates a new access con-
trol context but only based on the protection domain of the
called methodf under the assigned principals ˆs0.

hd :: ~d; d̂; ŝi :: C
doAsPrivileged(ŝ0; f)
���������������! (4)

hhD(f ; ŝ0)i;fdg; ŝ0i :: hd :: ~d; d̂; ŝi :: C

Returning from a method. When a stack framef returns
control to its calling frame,D(f ; ŝ) = d, we distinguish be-
tween two cases:

hd :: d0 :: ~d; d̂; ŝi :: C
return
����! hd0 :: ~d; d̂; ŝi :: C : (5)

If the call sequence consists of more than one protection do-
main, then we reconstruct the former context by removing
the protection domain of the returning stack frame.

hhdi; d̂; ŝi :: C
return
����!C : (6)

If the call sequence is a singleton list, then we simply pop
the current context from the sequence of security contexts
of the thread.

Definition 1. A Java 2 authorization system A is an ab-
stract machine hQ;q0;∆;!i, where

� Q is the set of states;

� q0 2 Q is the initial state;

� ∆ = fcall;return;doPrivileged;doAs;doAsPrivilegedg
is the set of labels;

� !� Q�∆�Q is the transition relation.

The operational semantics for the Java authorization system
is given by the transition relation ! defined by the above
inference rules 1–6 over the state space Q = C and initial
state q0 = hhsystemi;fsystemg; /0i. []

0-7695-0671-2/00 $10.00 � 2000 IEEE

In the following, the expressionq
δ
�!q0 is a shorthand for

hq;δ;q0i 2!. We also define the derived transition relation
σ
=) (σ 2 ∆�) of sequences of actions:q

hi
=) q andq

δ :: σ
===)

q00 iff q
δ
�!q0 andq0

σ
=) q00.

3.6 Access Control Decision

In Java, a requester is represented by a security context
that is composed of protection domains, and, possibly, ac-
tivated principals. Therefore, requesters do not correspond
with authorization subjects given in the policy. An access
control rule determines whether a requester must be al-
lowed or denied access. This rule is implemented by the
checkPermission method of classAccessController
whose algorithm can be given as:

checkPermission(h~d; d̂; ŝi; p) = true

� (8d 2 ~d : P(d)) p)^ (8d 2 d̂ : P(d)) p)

Access is granted only if the required permissionp can be
derived from the execution sequence~d as well as from the
security contextd̂. Note that the set ˆs of principals in the
given security context has already been taken into account
whenever a new frame was pushed on the stack. This access
control checking can be performed in linear time w.r.t. the
number of domains in the execution sequence and in the
security context.

Any Java authorization system is complete because all
Permission and Principal classes used have to imple-
ment theimplies methods, provided they do not imple-
ment an infinite loop. Furthermore, if there is no match-
ing protection domain in the policy specification, the de-
fault protection domain that implements the Java sandbox
is taken.

A few concluding remarks on the complexity of the de-
scribed algorithm are in order. JDK 1.2 uses a lazy evalu-
ation strategy to implement the access control decision al-
gorithm. Whenever permission checking is requested, the
algorithm searches the frames on the caller’s stack in se-
quence, from newest to oldest. The search terminates, for-
bidding access (and throwing an exception), upon finding a
stack frame that is forbidden by the policy engine from ac-
cessing the target. Otherwise, the search terminates, grant-
ing access, when all stack frames are allowed to access the
target, either reaching the end of the stack or a frame whose
code is marked privileged.

Stack inspection has high run-time costs. At worst, the
cost is proportional to the current stack depth. The JDK 1.2
algorithm iterates over the stack frames to determine the
associated protection domains (depending on URL prefix,
signers, and active principals). For each protection domain,
the algorithm again iterates over the contained permissions

to find one that implies the required permission. Thus, the
performance of the access control decision algorithm will
depend on the number of protection domains, the number
of permissions per protection domain, and the stack depth.

Looking at the data structures of our model, we can eas-
ily identify simplifications. For example, the first compo-
nent of the security context of a thread is a sequence of pro-
tection domains. The result of the access control decision,
however, is independent of the order and frequency of the
protection domains. In the model, the call sequence is only
used to keep track of the evolution of the Java stack frame.
An advanced data structure such as a multi-set might there-
fore lead to a more efficient implementation. The model
also allows us to identify where symbolic representations
can be used as an efficient implementation technique.

Based on our definition of the Java authorization system
A we can now define what it means to implementA cor-
rectly.

Definition 2. An authorization system A
0 =

hQ0;q0

0;∆;!i correctly implements Java authorization A if
checkPermission(q0; p) = checkPermission0(q0

0; p) and for

any action sequence σ if q0
σ
=) q and q0

0
σ
=) q0 then

checkPermission0(q; p) = checkPermission(q0; p). []

Note that our definition of correctness is independent of
the structure of the states and of the algorithm of the cor-
respondingcheckPermission0 function of the authorization
systemA 0.

4 Expressiveness of Java 2

Authorization is an independent semantic concept that
should be separated from its implementation in system-
specific mechanisms. In this section, we analyze whether
the Java 2 policy language is expressive enough to specify
commonly encountered authorization requirements.

Our formal model shows that the Java access con-
trol decision depends on a number of relations. Some
of them have a fixed meaning: URL prefix (�) and
key inclusion (�) as well as the partial orders on re-
sources and actions as implemented by thePermission
classes that belong to the core Java platform API, for ex-
amplejava.io.FilePermission. The others are given
by the system-specific implementation ofimplies meth-
ods of derivedPermission and Permissions classes
as well as of thePrincipal classes implementing the
PrincipalComparator interface.

To analyze the expressiveness of the Java 2 access con-
trol model, this section presents Java policies that express
three distinct security policies: identity-based access con-
trol, multi-level security, and role-based access control
(RBAC). Identity-based access control uses the identity of

0-7695-0671-2/00 $10.00 � 2000 IEEE

principals and resources to define an explicit relationship
representing access rights. Multi-level security classifies
principals and resources and uses a set of rules to infer the
authorization state from these classifications.

The specification of access rights in Java is identity-
based as well as classification-based. Principals with simi-
lar security properties are grouped into protection domains,
and permissions are granted to protection domains, thus es-
tablishing an indirect relationship between principals and
rights. Java access control is not discretionary as it enforces
a system-wide access control policy, where the authoriza-
tion state cannot be changed at the discretion of users.

4.1 Identity-based Access Control

In Java 2, permissions are granted to protection domains,
and principals belong to protection domains. This indirec-
tion, where permissions are not granted to principals di-
rectly, is by design [3]. On the one hand, it facilitates man-
agement of authorization; on the other hand, it does not al-
low permissions to be enabled/disabled one by one as in the
Netscape security model [10].

Each grant entry in a policy file specifies a code base,
code signers, and principals triplet. For example, the grant
entry

grant CodeBase "http://guapo.com",
SignedBy "tony",
Principal NTPrincipal "kent" {

Permission java.io.FilePermission
"/user/kent", "read,write";

};

defines that code fromguapo.com, signed bytony, and run-
ning as principalkent has the permission to read and write
files in the directory/user/kent. In our model, assuming
that values (likekent) implicitly carry their type informa-
tion (NTPrincipal), the policy would have the following
mapping:

P(hhttp://guapo.com;ftonyg;fkentgi)

= fh/user/kent;readi;h/user/kent;writeig:

In [8], Lai et al present a usage scenario where a ser-
vice authenticates a remote subject, and then performs
work on behalf of that subject. Using JAAS, the server
runs in an access control context bound by the sub-
ject’s permissions. Having available the work to be per-
formed as ajava.security.PrivilegedAction, it uses
theSubject.doAs method to associate the Subject with the
current access control context. Thus the server is able to
convey some “stack information”, i.e. access control con-
text, between platforms.

4.2 Multi-level Security

To implement a label-based access control policy, we
introduce permissions of resource typeLabel. Let us as-
sume three security levels; letr1 stand for permission
hlevel1;readi, and permissionsr2, r3, w1, w2, andw3 are
built in the same way. Permission typeLabel then consists
of the individual permissionsfr1;r2;r3;w1;w2;w3g. For ex-
ample, permissionr3 expresses a higher security level than
r2.

Security labels are attached to subjects and targets. A
label on subjects is called a security clearance. A label on
targets is called a security classification. We model security
clearances by granting each subject label rights according
to her clearance. For example, if subjectalice has clear-
ance 2 she gets permissionsr1, r2, w2, andw3, denoting
that she can read all targets of classification 2 or lower, and
that she can write on all targets with the same classification
or higher.

grant Principal LabelPrincipal "alice" {
Permission Label "level1", "read";
Permission Label "level2", "read,write";
Permission Label "level3", "write";

};

The above grant entry defines that code running as principal
alice has clearance level 1 and thus the permission to read
and write targets with security level 1, and to write to targets
with higher classification. In our model, the policy would
have the following mapping:

P(hε; /0;alicei) =

8>><
>>:

hlevel1;readi
hlevel2;readi
hlevel2;writei
hlevel3;writei

9>>=
>>; :

As access control granularity in Java is on the method
level, we have to determine the classification level of each
method. For all multi-level security schemes it is assumed
that each method has either read or write characteristics.
Checks for these levels are inserted in the methods. Assume
the above subjectalice wants to invoke methodm1, which
has classification level 1 and thus requires permissionr1.
Access is allowed as the permissionr1 is granted to sub-
ject alice. Assume further that methodm2 requires permis-
sion w1 and methodm3 requires permissionw3. Then the
same subjectalice is allowed to invoke methodm3 (write-
up) but is not allowed to invoke methodm2 (no write-down,
*-property).

Administration can be simplified if we introduce a per-
mission hierarchy as follows:r3) r2 andr2) r1, and, by
transitivity, r3) r1. Similarly, it shall hold thatw1) w2,
w2) w3, andw1) w3. This means that an administrator
would give a subject with clearance level 2 the permissions

0-7695-0671-2/00 $10.00 � 2000 IEEE

r2 andw2 instead of the permissionsr1, r2, w2, andw3. As
classification and clearance relations are static, there is no
loss of flexibility by implementing the permission hierarchy
in the corresponding permission class.

4.3 Role-based Access Control

RBAC models associate permissions with roles and assigns
users with appropriate roles. A major difference between
groups and roles is that roles can be “activated” and “deac-
tivated” by users at their discretion, whereas group mem-
bership always applies [5]. JAAS treats both groups and
roles simply as named principals [8]. Thus there no distinc-
tion is made between the two concepts. A role as well as a
group membership can be enabled with theSubject.doAs
method that dynamically associates an authenticated subject
with the current access control context.

The grant entries in the Java policy file implement the
RBAC permission to role assignment relation. The user to
role assignment relation, however, is managed by user ad-
ministrators outside of Java. Thesubject.doAs method
dynamically associates principals with the current Access-
ControlContext and thus defines a session during which a
subset of roles is simultaneously activated, of which the user
is a member. The permissions available to the user are the
union of permissions of all roles activated in that session,
i.e. the role principals given to theSubject.doAs method.

The next example shows how to formulate an access con-
trol policy where a role is combined with a group member-
ship, e.g. “Only somebody who is a manager and a member
of project-X is allowed to change project X’s time sched-
ule”.

grant Principal Role "manager",
Principal Group "project-X" {

Permission SchedulePermission "change";
};

The above grant entry lists two principals and thus requires
that a subject provided toSubject.doAs must have both
principals associated with it to be granted the specified per-
missions.

P(hε; /0;fmanager;project-Xgi) = fhschedule;changeig

Role and group hierarchies can be built with princi-
pals that implement thePrincipalComparator inter-
face. For example,view permission below is granted to
any subject that class RoleComparator, implementing the
PrincipalComparator interface,implies:

grant Principal RoleComparator "member" {
Permission SchedulePermission "view";

};

If we assume that a manager role is senior to a member role,
manager) member, then managers inherit all the permis-
sions granted to members. To put up this hierarchy, Role-
Comparator has to implement the PrincipalComparator in-
terface, and itsimplies method must return true if the pro-
vided subject has an associated “manager” role principal.

Compared with the approach taken by Giuri [2], where
a role is implemented as a permission, principal roles solve
the problem of dynamically enabling roles but move the def-
inition of the role hierarchy into the class that implements
thePrincipalComparator interface, and thus is not user-
definable.

In addition to role hierarchies, constraints are another
fundamental aspect of RBAC. For example, principal
classes that form a group/role hierarchy should implement
an acyclic membership relation, i.e., if a principalpi is a
member (directly or indirectly) of another principalp j, with
pi 6= p j, thenp j cannot be a member ofpi. Above property
must be properly implemented in thePrincipal classes.
RBAC models with constraints on the assignment of users
to roles and of roles to permissions support security prin-
ciples such as separation of duty. Static separation of duty
requires that certain roles cannot be granted together to the
same subject and can be implemented by the principal au-
thenticator (the login module of JAAS). Dynamic mutual
exclusion of roles can only be checked by thedoAs method.
In both cases, the entities that authenticate role principals as
well as activate role principals must be aware of (the con-
straints on) the role hierarchy.

Above discussion shows that the elementary features of
RBAC can be implemented in Java 2. However, it requires
extensions to vital components of the Java 2 security archi-
tecture to implement dynamic mutual exclusion of roles.

5 Conclusion

At the core of Java authorization, protection domains char-
acterize sets of principals to which the same set of permis-
sions are granted. These policies are user-definable but (im-
plicitly) refer to a number of relations, such as resource, per-
mission, or principal hierarchies. Implemented in miscella-
neous classes, be they within Java or application libraries,
these relations are not user-definable. Finally, user adminis-
trators manage the assignment of principals to users. How-
ever, such management functionality is beyond the scope of
Java.

In this paper we have presented a formal model of the
above Java 2 access controls with JAAS. The model pro-
vides an abstract machine in terms of a small number
of transitions. It was designed as far as possible in an
implementation-independent way, to work out the underly-
ing concepts. However, this is quite hard to achieve as the

0-7695-0671-2/00 $10.00 � 2000 IEEE

Java access control decision function is defined as a low-
level checking algorithm.

The provided formal description of the Java access con-
trol model serves the basis for the understanding of the fun-
damental concepts. By mechanizing our model within a
verification environment we could increase assurance that
our definition of Java 2 access control is indeed the model
implemented by Sun’s distribution. It also opens the pos-
sibility to compare Java access control model with other
access control models and to prove properties about the
model. Serving as a reference specification, our model can
be used to verify the correctness of implementations based
on different data structures and algorithms, Erlingsson and
Schneider’s in-lined reference monitor for example [1].

We showed that Java 2 Authorization and JAAS can im-
plement different access control policies, including multi-
level operations. However, policies that dynamically adopt
to changing conditions cannot be directly implemented in
Java 2. As the authorization state is derived from the pol-
icy file together with the permission and principal hierar-
chies, all static in nature, there are no means to express that
a subject can gain or lose some permissions, except for tem-
porarily adding principals to the current security context. A
possible approach to implement history-based policies, like
the Chinese Wall policy, would be to record changes in the
user registry and thus to implement parts of the access con-
trol policy within the authentication service.

The development of Java authorization will certainly
continue over time, for example by introducing negative
permissions. Our model could serve as a sound base to
study the implications on the logic as well as on complexity.

The default policy language supported by the standard
JDK 1.2.2 platform does not enable users to define their
own principal or permission relations. As principal as well
as permission classes are usually quite simple, a policy
processing tool may automatically generate these classes
from higher-level descriptions. For example, the Autho-
rization Specification Language (ASL) [5] is a logical lan-
guage in which above relationships together with integrity
constraints such as incompatible group memberships can be
expressed. The presented formalization of the Java 2 access
control model provides a basis to identify the subset of ASL
that could be implemented in Java 2.

Acknowledgments

This work was partially supported by the Defence Eval-
uation & Research Agency (DERA) under programme Bea-
con. It represents the views of the author. The author thanks
Larry Koved and Charles Lai for their feedback on JAAS.
Anthony Nadalin and the anonymous referees gave valuable
comments and suggestions on this work.

References

[1] Ú. Erlingsson and F.B. Schneider. IRM Enforcement
of Java Stack Inspection. InIEEE Symposium on Re-
search in Security and Privacy, IEEE Computer Soci-
ety Press, May 2000.

[2] L. Giuri. Role-based access control in Java. In
Third ACM Workshop on Role-Based Access Control
(RBAC’98), ACM Press, pages 91–100, 1998.

[3] L. Gong and R. Schemers. Implementing protection
domains in the Java Development Kit 1.2. InInter-
net Society Symposium on Network and Distributed
System Security, IEEE Computer Society Press, pages
125–134, 1998.

[4] L. Gong. Inside Java 2 Platform Security: Architec-
ture, API Design, and Implementation. The Java Se-
ries. Addison-Wesley, 1999.

[5] S. Jajodia, P. Samarati, and V.S. Subrahmanian. A
logical language for expressing authorizations. In
IEEE Symposium on Research in Security and Pri-
vacy, IEEE Computer Society Press, pages 31–42,
1997.

[6] G. Karjoth. Authorization in CORBA security. In
Quisquateret al. [9], pages 143–158.

[7] L.L. Kassab and S.J. Greenwald. Towards formalizing
the Java architecture for JDK 1.2. In Quisquateret al.
[9], pages 191–207.

[8] C. Lai, L. Gong, L. Koved, A. Nadalin, and
R. Schemers. User authentication and authorization
in the Java platform. In15th Annual Computer Secu-
rity Applications Conference, IEEE Computer Society
Press, pages 285–290, 1999.

[9] J.-J. Quisquater, Y. Deswarte, C. Meadows, and
D. Gollmann, editors.Fifth European Symposium on
Research in Computer Security (ESORICS), Springer,
Lecture Notes in Computer Science 1485, 1998.

[10] D.S. Wallach and E.W. Felten. Understanding Java
stack inspection. InIEEE Symposium on Research in
Security and Privacy, IEEE Computer Society Press,
pages 52–63, 1998.

0-7695-0671-2/00 $10.00 � 2000 IEEE

