
Architecture for federating heterogeneous networking testbeds

R. Mahindra∗, G. D. Bhanage∗, G. Hadjichristofi∗†, S. Ganu∗‡, I. Seskar∗, D. Raychaudhuri∗
∗WINLAB, Rutgers University, Piscataway, NJ 08854,USA

†University Of Cyprus, Cyprus
‡ARUBA Networks

Abstract— As networking research expands into new
frontiers, the research community has felt a need for a
heterogeneous networking research infrastructure, to ex-
periment with the interaction and integration of different
types of networks and to test the performance of various
networking protocols in realistic environments. This has
led to the Global Environment for Network Innovations
(GENI) effort, supported by NSF, which aims at creating a
global infrastructure for conducting networking experiments
across diverse substrates such as wired (local and wide-area),
wireless, sensor and cellular networks. In this paper we
discuss the challenges involved in federating such diverse
networking testbeds and present two models for building
such an experimental infrastructure. The first model en-
ables a wired testbed to link with wireless edge nodes
during an experiment, whereas the second model enables a
wireless testbed to link to wired testbeds. Proof-of-concept
experiments are also presented reinforcing the usefulness
of the models in terms of facilitating experiments over the
integrated heterogeneous infrastructure.

I. INTRODUCTION

The GENI Project [1] aims to provide a flexible and
programmable shared experimental infrastructure for in-
vestigation of future Internet protocols and software. As
explained in the project development plan [2], GENI
will consist of a global-scale wired network with pro-
grammable and virtualizable network elements (routers,
switches, servers) along with several wireless access net-
work deployments intended to support experimentation
with mobile computing devices, embedded sensors, radio
routers, etc. This research finds solutions for an impor-
tant technical issue related to the integration of wireless
networks into GENI, namely the integration of control
and management across wired and wireless networks,
through the provision of a single programming interface
and experimental methodology.

The importance of the integration of control and man-
agement across wired and wireless experimental net-
works, was highlighted in [4]. While PlanetLab [5] serves
as the baseline model for programming and virtualization
in wired GENI, the model needs to be significantly
extended to accommodate the full range of envisioned
usage. Specific extensions to be considered include: de-
vice heterogeneity (e.g. wireless access points, ad hoc
radios, sensors), a broader range of experiment types (e.g.
short-term network performance experiments running on
selected network nodes vs. long-term slices used in Plan-
etLab), and alternative end-user support requirements (e.g.
experienced programmers needing little if any experi-
mental support vs. protocol analysts who might prefer
tools for higher-level programming and execution man-

agement). The GENI Architecture Working Group has
initiated discussion of a general control and management
framework that covers all these needs, but it is clear that
a parallel thread of proof-of-concept prototyping would
be extremely valuable to build a practical understanding
of integration issues and provide guidance to the design.
Based on these considerations, we believe that it would be
productive to initiate collaborative prototyping activities
aimed at integrating PlanetLab with other large scale
wired and wireless testbeds such as Emulab [6], Xbone
[10], DETER [11] and ORBIT [12]. In particular, a project
aimed at integrating PlanetLab with a large-scale wireless
testbed like ORBIT may be expected to yield important
design insights on the issues of device heterogeneity
and necessary extensions to control and management
protocols for effective support of wireless networks as
an integral part of the experimental system.

A related aspect of this integration is the ability to carry
multiple concurrent experiments within the integrated
platform. This capability can be achieved through virtu-
alization. While significant progress has been made with
virtualization of wired network elements (such as access
routers), work on wireless virtualization still remains at an
early stage [3] with much more work to be done for prac-
tical realization of techniques that can be used in GENI. It
is recognized that strict virtualization of wireless network
elements is fundamentally a difficult problem because of
the fact that radios interfere with other radios in their im-
mediate vicinity via interactions at RF spectrum, physical
(PHY) and medium-access control (MAC) layers. These
interactions make it more difficult to create orthogonal
time slices on radio channels than on wired network links,
but wireless deployments in large systems like GENI do
have two additional dimensions (frequency and space)
that can be exploited to isolate simultaneous experiments.
This paper covers the integration framework that has been
developed and demonstrates integrated experiments that
use Frequency Division Multiplexing (FDMA) and Virtual
MAC (VMAC) as forms of virtualization. The proof-
of-concept prototyping presented in this paper would be
extremely valuable in building a practical understanding
of integration issues and providing guidance to the design
of GENI. Results from the prototyping are expected to
feed into ongoing system engineering work aimed at
specifying key technology components that will constitute
GENI. Contributions of this paper can be summarized as:

• Consider representative wired-wireless testbed and
outline an integrated framework with two approaches

(PlanetLab driven and ORBIT driven) for rapid pro-
totyping and experimental deployment over hetero-
geneous substrates.

• Address the problem of supporting multiple concur-
rent experiments over these substrates and provide
proof of concept experiments conducted using the
framework

The rest of the paper is structured as follows. Section II
talks about the aspects to be considered while integrating
heterogeneous wired and wireless testbeds. Section III
talks about the representative wired and wireless testbeds
considered for integration. Section IV discusses about the
differences in the architectures of the two testbeds. De-
tailed discussion of the integration models is in Section V.
Results from proof of concept experiments are shown in
Section VI followed by conclusions.

II. INTEGRATION OF WIRED AND WIRELESS
EXPERIMENTATION NETWORKS

To support realistic and large-scale experimentation
with new network architectures and distributed systems an
integrated testbed framework would have to be based on
very flexible design that will enable a variety of network
architectures, services, and applications to be evaluated;
experiments to be conducted under real-world workloads
to be deployed in an incremental manner over a network
that spans a wide range of representative networking
technologies. To accomplish these goals, we need to move
far beyond existing testbeds and experimental facilities,
yet the best way to do this would be to leverage (and
synthesize) a wide range of ideas and techniques that
have been developed in isolation on individual testbeds.
Specifically, GENI will adopt PlanetLab’s model of virtu-
alizing the available resources, thereby allowing multiple
experiments to run in isolated slices. (A slice refers to the
distributed resources bound to a particular experiment.)
As a result, GENI will need to support:
• A wide range of heterogeneous network resources

(e.g., wireless subnets, customizable routers)
• An inclusive model to enable researchers to use the

facility to run their experiments e.g., controlled or
reproducible experiments and long−running deploy-
ment studies)

• The ability to federate across resources contributed
by multiple autonomous organizations (e.g., from
other countries and from other research communi-
ties).

In each of these dimensions, there is a lot to learn
from other experimental testbeds, including Emulab [6],
ORBIT [12], DETER [11], and WAIL [13]. This section
addresses how the above-mentioned dimensions can be
supported enabling GENI to meet these objectives. In
particular, we propose to integrate PlanetLab with ORBIT,
and in the process, better understand how virtualized
slices can be extended to accommodate both heteroge-
neous wireless network technologies and multiple ex-
perimental modalities. Both ORBIT and Planetlab were
designed to meet very different experimental research

Fig. 1. Software architecture overview with the ORBIT radio grid.

requirements. The next section will walk through some of
the fundamental differences in the design of these testbeds
that should be considered while building the integration
models.

III. OVERVIEW OF THE ORBIT AND PLANETLAB
TESTBEDS

ORBIT: The overall architecture of the ORBIT testbed
is influenced by the requirement to provide a multi-
user wireless experimental facility. This presents some
interesting challenges including routine ones such as
user account maintenance, access control, user portal for
experimenters as well as more complex ones related to
optimizing the usage of the testbed by accommodating
as many users as possible in a given time duration. As
opposed to wired experimentation, where users can have
access to the shared facility simultaneously and can be
segregated either at the MAC layer using VLANs or IP
layer using firewalls or a combination of both, wireless
experimentation poses an interesting challenge due to
the inherent broadcast nature of the medium, thereby
affecting the other nodes in the vicinity. Partitioning a
wireless grid in a controlled fashion for simultaneous
experiments could be achieved either by introducing
physical barriers that block radio propagations from one
portion to the other or ’soft’ walls introduced by using
an array of noise generators. The former approach is
difficult to reconfigure and involves physical movement of
objects (RF shields) to the portion requiring isolation and
hence not scalable. Nevertheless, until any of the above
schemes are in place, a simple sequential scheduling
allowing one set of experiments to use the entire shared
facility at a time is currently being used. Thus, given
the sequential nature of usage, it becomes necessary to
accommodate as many users as possible and our software
architecture and design is primarily influenced by this
criterion. As identified earlier, in most of the experiments,
setting up the experiment (using scripts or other control
mechanisms) and collecting results of the experiments
and collating them usually is a significant contributor to
the overall experiment time. Hence, the design goal is to
reduce this setup time and simplifying data collection as
much as possible. An experiment usually comprises the

Console

Measurements
Support
services

Sliver

Sliver

Sliver
Planetlab – ORBIT

Proxy

Nodeagent running on
radio nodes in the ORBIT

grid

Internet

1

2

Sliver
on the PlanetLab

node

Run PlanetLab experiment using
integrated services to access both
ORBIT and Planetlab nodes

1
Request ORBITgrid resources during
PlanetLab slice creation

2

START

ORBIT grid (or part of it)
= PlanetLab sliver

Add
testbed to
slice using

PLC

Console

Measurements
Support
services

Sliver

Sliver

SliverSliver
Planetlab – ORBIT

Proxy

Nodeagent running on
radio nodes in the ORBIT

grid

Internet

1

2

Sliver
on the PlanetLab

node

Run PlanetLab experiment using
integrated services to access both
ORBIT and Planetlab nodes

1
Request ORBITgrid resources during
PlanetLab slice creation

2 Run PlanetLab experiment using
integrated services to access both
ORBIT and Planetlab nodes

1
Request ORBITgrid resources during
PlanetLab slice creation

2

START

ORBIT grid (or part of it)
= PlanetLab sliver

Add
testbed to
slice using

PLC

Fig. 2. Outline of the PlanetLab driven integrated experimentation(PDIE) model where PlanetLAB users get scheduled access to chosen nodes on
the ORBIT grid using the concept of an ORBIT sliver.

following steps: 1)Selection of nodes which will be a part
of the experiment. 2)Selecting the roles played by each
of these nodes in the experiment (sender, receiver, AP,
relay etc). 3)Deploying necessary software on each node
corresponding to the role they play each. 4)Configuration
of wireless interfaces (Ad-hoc or Managed,Power levels,
Channel settings etc). 5) Collecting results at run-time and
collate them (statistical analysis or simple time plots)

In this framework, the experiment controller is called
the NodeHandler and the corresponding client side soft-
ware residing on the nodes that responds to commands
from the NodeHandler is the NodeAgent. The experi-
ment is specified in the form of a Ruby script and is
disseminated over multicast to the nodes involved in the
experiment (see Figure 1). NodeHandler also interacts
with other support services to initialize the environment
prior to the actual experiment. These tasks may include
powering up the relevant nodes, installing custom images
on the nodes if needed and setting up the databases for
measurement collection.
PlanetLab: Planetlab infrastructure consists of a globally
distributed set of PL-nodes that support broad coverage
services that benefit from having points of presence
on the network. PlanetLab users either run short-term
experiments or deploy continuously running services.
These models are supported by PlanetLab’s distributed
virtualization - each experiment runs in a slice of the
global resources. Multiple slices run concurrently on
PlanetLab independent of each other. Each PL-node runs
Linux-Vservers which implement both namespace and
performance isolation among the various slices running
on the node - defined as a sliver. A sliver is a set of
allocated resources on a single PlanetLab node. Network
virtualization is provided by use of VNET.

The first step for a user is to create a slice in the
PlanetLab network that extends across several nodes.
All slices are given best effort promises when they are

created. Slices acquire and release network resources over
time and there is no guarantee on the set of resources for a
slice. PlanetLab Consortium (PLC) manages the creation
and authentication of the slices. Once the slice has been
created to the nodes, they are populated with the minimal
Fedora Core Linux Installation.

The testbed does not offer any support for chore-
ographing an experiment and controlling all the nodes
using automated scripts. Popular tools like ssh, pssh [15],
scp and pscp are used to gain access to the nodes, to
control them and to populate the nodes with the required
applications and software. In addition the results and
measurements of the experiment have to be manually
collected. Despite all this, there are third party softwares
available for controlling and monitoring experiments in
PlanetLab. Considering the above factors, the following
two models are presented in the next section that have
been developed to integrate these two testbeds and con-
duct joint experiments.

IV. DIFFERENCES IN TESTBED ARCHITECTURES

Both of these testbeds differ in their architecture sig-
nificantly, based largely on their purpose. The major
differences are as follows:
Experiment models - The duration of experiments on the
ORBIT testbed is short-lived, on the order of a couple of
hours, as opposed to Planetlab’s services-oriented model,
which supports experiment durations on the order of
months. To resolve this issue, we propose the usage of
a long-running ORBIT slice and dynamic addition of
slivers during run-time (relying on Planetlab’s low-latency
mechanism for sliver addition).
System state maintenance - Planetlab maintains informa-
tion regarding the state of the individual nodes. ORBIT
could either rely on existing Planetlab mechanisms for
this information (as well as updates) or implement its
own mechanism. In addition to per-node state, the ORBIT

Console

Measurements
Support
services

NodeAgent

Using integrated services, access both ORBIT and
Planetlab nodes in the experiment

NodeAgent

NodeAgent

Planetlab – ORBIT
Gateway

Nodeagent running on radio
nodes in the ORBIT grid

Internet

1

3

Experiment
Script

2

Sliver running
nodeagent

on the PlanetLab
node

Describe experiment dynamics using
script

1
Reserve ORBIT and PlanetLab nodes for the
experiment (assumes slice on Planetlab nodes
with nodeagent exists)

2

3

Integrated
resource manager

START

Console

Measurements
Support
services

NodeAgent

Using integrated services, access both ORBIT and
Planetlab nodes in the experiment

NodeAgent

NodeAgent

Planetlab – ORBIT
Gateway

Nodeagent running on radio
nodes in the ORBIT grid

Internet

1

3

Experiment
Script

Experiment
Script

2

Sliver running
nodeagent

on the PlanetLab
node

Describe experiment dynamics using
script

1
Reserve ORBIT and PlanetLab nodes for the
experiment (assumes slice on Planetlab nodes
with nodeagent exists)

2

3

Integrated
resource manager

START

Fig. 3. Outline of the ORBIT Driven Integrated Experimentation (ODIE) model where ORBIT users can add PlanetLab nodes to their experiments
using the concept of an ORBIT slice.

testbed will also need to maintain information on slice
expiration and node membership at much shorter time
scales. Given the potential possibility for the maintenance
of state by both testbeds, it is imperative that they
maintain a consistent view of the available resources.
Failure handling - Given the large-scale, distributed
and evolving nature of both testbeds, failures of many
different kinds are inevitable. These failures will need to
be classified and strategies to mitigate them as well as
corrective measures will need to be developed.
Transparent resource ownership and accountability
- Users of the ORBIT testbed are affiliated to different
organizations and utilize resources at much shorter time
scales. In order to ensure accountability of user actions
with regards to resource usage (especially on Planetlab),
mechanisms will be required to track resource ownership
information and share it between the two testbeds. More-
over, unlike the current ownership model on Planetlab
where resource ownership mostly changes on time scales
which are on the order of months, resource ownership
in this model will change much faster, on the order of a
couple of hours.
Experiment life cycle -While Planetlab is based on
a long-running service oriented experimentation model
based on the concept of virtualization of resources, the
ORBIT testbed provides an infrastructure for repeatable
wireless experiments. This experimental testbed runs on
top of the Internet as an overlay thereby giving researchers
access to: 1) a large set of geographically distributed
machines, 2) a realistic network substrate that experiences
congestion, failures, and diverse link behaviors, and 3) the
potential for a realistic client workload. Planetlab uses a
central slice creation and management utility, Planetlab
Central (PLC) for adding, renewing and managing exist-
ing slices on different nodes.

On the other hand, the ORBIT Radio Grid is a multi-
user wireless experimental research testbed that allows
”sequential” short-term access to the radio grid resources

for repeatable experimentation. Scheduling is done so
that users have exclusive access to the grid during their
assigned time slot. Exclusive access to the grid ensures
no RF interference from other experiments. Experimental
control software (NodeHandler) as well as an integrated
measurement collection framework (OML) facilitate the
definition, execution of experiments and also enable the
collection of experimental results at run-time.

V. INTEGRATION MODELS

In this section we will present two approaches to
integration of the virtualized testbeds. The first model
(PDIE) is intended to serve PlanetLab users who want to
extend their experiments to include wireless networks at
the edge without changing the PlanetLab interface, while
the second model (ODIE) is intended to serve ORBIT
wireless network experimenters who want to augment
their experiments by adding wired network features with-
out major changes to their code.

PlanetLab

Nodes
Orbit

NodesSliver
sliver

sliver

GRE

PL-Orbit Proxy

sliver
sliver

sliver

Exp.2

Exp.3

Exp.1

Exp.2

Exp.3

Exp.1
Exp.2

Exp.3

Exp.1

Fig. 4. A sample approach based on the PDIE model. The figure shows
the use of a PlanetLab - ORBIT proxt for mapping PLanetLab slivers
to ORBIT nodes.

A. PlanetLab Driven Integrated Experimentation (PDIE)
Model

The PDIE model shown in Figure 2 provides a
Planetlab-ORBIT gateway as a node that PlanetLab users

can access when they want to include emulated wire-
less edge networks in their experiments. The PlanetLab-
ORBIT gateway will provide abstractions for the setup,
control and measurement on a specified topology using
a modified version of the nodeHandler as the interface
software. This approach does not involve major changes
to either the PlanetLab or ORBIT testbeds but would
require the development of a PlanetLab proxy module.
PL users can use their own preferred tools, such as pssh
[15] or the nodeHandler-nodeAgent framework.

Figure 4 describes the current design with the PDIE
integration model. The Planetlab ORBIT gateway ma-
chine, which acts as a proxy is running as a part of
the ORBIT framework. This gateway communicates with
PlanetLab nodes via GRE tunnels[7].One GRE tunnel is
setup for every selected PlanetLab node. Packets received
from different experiments or slices on PlanetLab nodes
are redirected to the corresponding ORBIT nodes. This
functionality is achieved by having GRE tunnels from
the gateway to the ORBIT nodes. On the PlanetLab side,
experiments 1, 2, and 3 are running in different slivers on
each PlanetLab node. On the ORBIT side one or more
ORBIT nodes are linked to the PlanetLab slivers of each
experiment.

This design requires extensions to the Planetlab re-
source specification model to include topology and some
other wireless-specific features. Note that this Planetlab-
ORBIT gateway would also benefit from future virtual-
ization capabilities to be developed for ORBIT, bridging
the gap between the Planetlab slice model and ORBIT’s
single-user model.

Using the virtualized ORBIT testbed, a Planetlab slice
could be extended to include individual ORBIT nodes.
Currently, the entire ORBIT testbed resources have to
be reserved and allocated to one user. To deploy the
integration model, wireless virtualization solutions need
to be investigated for ORBIT to allow long term con-
current integrated experiments. In this paper, we discuss
a couple of proof-of-concept experiments on PlanetLab
and ORBIT with the notion of virtualization of ORBIT
testbed resources.

B. ORBIT Driven Integrated Experimentation (ODIE)
Model

The ODIE approach allows users to include the long-
running “ORBIT slice” in Planetlab nodes in their ex-
periments with a single experimental script. This model
is similar to that proposed in [14], where the authors
describe the integration of the Emulab [6] and PlanetLab
testbeds to provide Emulab users with access to PlanetLab
resources. Figure 3 presents a conceptual view of the
ODIE model.

The ODIE model has been implemented by extend-
ing the ORBIT NodeAgent functionality to work in the
PlanetLab node ”ORBIT Slivers”. A modified version
of ORBIT NodeHandler was developed to support ex-
periment definition, code download and execution. This
NodeHandler communicates with modified NodeAgents

running on the PlanetLab slivers. The following ap-
proaches can be used for topology selection and in our
current implementation, we look at the manual addition
approach
• Manual addition - experimenters can choose the

PlanetLab nodes individually.
• Metric-based addition - experimenters can either

prescribe the link-specific or node-specific charac-
teristics they desire and NodeHandler will automat-
ically assign the appropriate PlanetLab nodes to
the experiment. If one of these nodes fails during
the experiment, the NodeHandler shall dynamically
switch to another node satisfying the experimenter’s
criteria.

In order to communicate with nodes on the local sub-
net (ORBIT nodes) as well as remote PlanetLab nodes,
we need to extend the naming/addressing scheme and
communication protocol for the NodeHandler-NodeAgent
Framework to allow access to geographically diverse
nodes.
• Extended addressing scheme to include Planet-

Lab nodes: We address the PlanetLab nodes as
though they were part of the ORBIT network and
have the local DNS map requests for Planetlab
nodes to their respective public domain names (for
e.g. node21-3.orbit-lab.org will map toplanetlab-
01.cs.washington.edu).

• Extended communication layer: Currently in an
ORBIT experiment, commands sent to the ORBIT
nodes from the NodeHandler use reliable multicast.
For Planetlab nodes on the Internet, these commands
needed to be tunneled using reliable unicast since
multicast support on the routers in a path cannot
be assumed. The NodeHandler has been modified to
communicate with the NodeAgents on the PlanetLab
nodes over unicast-TCP. This modification eliminates
the need to provide reliability in the application layer.
The NodeHandler communicates with the PlanetLab
nodes in each experiment that requires wired net-
working resources.
The sequence of communications during an ex-
periment is as follows: When an experiment is
started, the NodeHandler starts the NodeAgents on
the specified PlanetLab nodes using the popular tool
’pssh’ and waits for them to report back. After
a timeout it records all the PlanetLab nodes that
have successfully reported back. The nodes that fail
to report during the timeout are replaced by other
PlanetLab nodes in the ORBIT Slice. This procedure
is repeated till the desired number of PlanetLab
nodes have reported back. (A failure could result
from node failure, node maintenance, slice clean-up,
link failure etc.). The next step for the NodeHandler
is to send commands to the NodeAgents to start the
necessary applications on the PlanetLab nodes. The
NodeAgents then report success or error messages
back to the NodeHandler indicating the status of the
nodes. This feature removed the need to manually

#-------------ACCESS POINT-----------#
defNodes(’AccessPoint’, [11,20])
{|node|
node.prototype("test:proto:mvlcrelay",

{’duration’ => prop.duration})
#802.11 Master Mode
node.net.w0.mode = "master"
node.net.w0.type=’a’
node.net.w0.channel="48"
node.net.w0.essid = "link1"
node.net.w0.ip="192.168.7.1"

}
#---------------CLIENT--------------#
defNodes(’Client’, [19,2])
{|node|
node.prototype("test:proto:mvlcdest",

{’duration’ => prop.duration})
node.net.w0.mode = "managed"
#802.11 Managed Mode
node.net.w0.type=’a’
node.net.w0.channel="48"
node.net.w0.essid = "link1"
node.net.w0.ip="192.168.7.7"

}
#----------- PlanetLAB nodes----------#
defPNodes(’[21,3,[21,5]’)

Fig. 5. Node configuration section of a sample script (ODIE model).

ssh each of the PlanetLab nodes in the experiment
to start the applications. After setting up the Plan-
etLab nodes, the NodeHandler configures and sets
up the ORBIT nodes. The user simply provides a
unified experiment script including both PlanetLab
and ORBIT nodes and the application definition that
the nodeHandler parses to execute the experiment
automatically.

• Caching Mechanisms: Caching mechanisms to aid
measurements collection - if a PlanetLab node goes
down during an experiment, mechanisms will be
needed to extract measurements related to the pre-
viously running ORBIT experiment. The current
ORBIT Measurement Library(OML) framework has
to be extended to provide real time measurement
collection for the PlanetLab nodes.

Experiment Scripting: The ODIE based experiment
script is parsed and executed by the NodeHandler to
choreograph the experiments. The NodeHandler runs on
the console of the ORBIT grid. A single script for the
ODIE models may be described in two sections:
• Node configuration section
• Experiment timing and execution section.

The node configuration section is responsible for setting
up all the nodes being used as a part of the integrated
experiment while the timing and execution section of
the ODIE script describes the execution sequence of the
experiment.

Figure 5 shows the section of the script that configures

#--Start applications on ORBIT nodes-#
whenAllInstalled() {|node|

nodes(’AccessPoint’).startApplications
wait 5
nodes(’Client’).startApplications
wait 195 # Experiment Duration
allNodes.stopApplications
Experiment.done

}
MAPS to planetlab01.cs.washington.edu,
and planet.cc.ga.atl.edu
Start applications on PlanetLAB nodes
WhenPLReady(){

defPApplication([21,3],’VIDEO1’){}
defPApplication([21,5],’/VIDEO2’){}
wait 195
defPApplication([21,3],[21,5],’STOP’){}

PLexpdone() }

Fig. 6. Experiment execution section of a sample script (ODIE model).

the nodes for the experiment. The first part of code
configures the wireless interfaces of two ORBIT nodes,
one as an access point and the other as a client. The
configuration part also defines the PlanetLab nodes in
Washington and Georgia to include in the experiment.
The node is manually chosen by the user. However
the PlanetLab nodes are addressed as extension to the
ORBITs Node addressing scheme. In ORBIT, all nodes
are addressed as x,y where x is the row number (1..20)
and y is the column number (1..20). Presently we have
20 PlanetLab nodes in the ORBIT Slice addressed as
[21,1..20].

Figure 6 describes the timing and execution section of
a typical ODIE script. The WhenAllInstalled() module is
responsible for checking if all the ORBIT nodes have been
configured as per the specification in Figure 5. Typically
when this is verified, individual applications like running
a traffic analyzer, traffic generator or any custom defined
applications can be executed based on the timing specified
in the script. Typically the application script in Figure 6
starts the applications on the access point and waits for
5 seconds before starting the applications on the client
nodes.

The module WhenPlReady() waits for the nodeAgents
on the PlanetLab to report. There is a time-out for every
PlanetLab node after which the NodeHandler ignores
the nodes that fail to report and chooses other available
nodes in the ”ORBIT slice” on PlanetLab. Once the
desired number of PlanetLab nodes have reported, the
applications on the respective nodes are initiated. The
Plexpdone() module ensures the slice is cleaned up at
the end of the experiment.

Since the NodeHandler/NodeAgent framework is based
on Ruby (a highly portable, scripting language) and since
both PlanetLab and ORBIT run different flavors of the
same OS (Linux), the porting of NodeAgent on Planetlab
slivers was relatively easy. Planetlab should provide an

Experimentsetting MaxJitter (ms) MaxDelta (ms) MeanJitter (ms)
Wireless One hop 1.68 7.66 0.98
Pl − Princeton 1.69 7.69 0.98

Pl −Washington 1.88 8.76 1.05
Pl −Washington (Loaded) 35.76 415.8 3.62

Pl − Japan 52.18 779.02 7.38

Fig. 7. Jitter results observed with different PlanetLab nodes serving the same video over the internet to wireless clients in the ORBIT grid.

Parameter V alue

Channel Rate 24Mbps
Offered Load Time Varying

Experiment Duration 2 Minutes
Averaging Duration Per Second

Operation Mode 802.11a

Fig. 8. Experimental Parameters Used With ORBIT Nodes

Wired
PlanetLab

Wireless
Orbit

Channel X

Washington

Georgia Access Points Clients

Channel Y

Fig. 9. Experiment layout where nodes are added from PlanetLab while
frequency seperation (FDMA) is used with the ORBIT nodes.

interface for efficient resource teardown mechanism upon
slice termination for each new experiment (every 1-2 hrs).
This mechanism can then be leveraged by the NodeAgents
running on the Planetlab nodes in the ORBIT slice.

VI. PROOF-OF-CONCEPT INTEGRATION WITH
WIRELESS VIRTUALIZATION

Virtualization requires efficient and systematic sharing
of resources across the framework to enable maximum
utilization. In this section we will evaluate some exper-
imental scenarios with integrated tests of the PlanetLab
and ORBIT testbed. Though these experiments performed
with the ODIE model, they can be carried out with equal
ease with a PDIE model. Throughout these experiments
we show the ease of conducting experiments in an inte-
grated fashion along with some approaches used for the
virtualization of ORBITs wireless resources.

Typically, we are running the following experiments:
1) Integrated experiments with frequency division

multiplexing of ORBIT Nodes
2) Integrated experiments with MAC layer virtualiza-

tion of ORBIT Nodes
The experiments in this section do not aim at showing
any important results with the example experiments but
rather the dexterity of the framework to perform integrated
experiments with maximum ease.

A. Frequency based ORBIT slicing coupled with Planet-
Lab

Aim: In this proof of concept experiment we show the
use of our architecture in testing the performance of video
delivery algorithms. It is important to note that we do
not aim to do a comparative study of the video delivery
algorithms themselves but rather demonstrate a way to
evaluate these algorithms with our setup.
Topology: Figure 9 shows the topology for this experi-
ment. We consider a typical scenario for streaming video
delivery across a network path that includes a edge wire-
less link. The experimentation includes two flows from
PlanetLab nodes to two Access Points configured within
ORBIT. The Access Points relay traffic to their respective
clients over orthogonal channels. Isolating experiments on
different and possibly orthogonal frequencies is one of
the easiest approaches to wireless virtualization (FDMA).
The video streamed from PlanetLab goes over the internet
giving experimenters the characteristics of a realistic
network. Physical and MAC layer parameters such as
channel rate, transmission power, injected noise, packet
sizes can be varied to test the effect of the wireless link on
the overall performance of the link. The video is streamed
and played using the Video LAN (vlc) [8] player. The
OML(ORBIT Measurement Library) framework [26] of
ORBIT provides means for recording the bit rate and jitter
in the video received at the ORBIT clients. We record
measurements for different PlanetLab nodes in terms of
their geographical distance from ORBIT.
Jitter measurement: Figure 7 shows the results for
the jitter values from the FDMA experiments. A video
was delivered from PlanetLab nodes in Princeton (NJ),
Washington and Japan. Results show relatively com-
parable jitter values for the Princeton and Washington
PlanetLab nodes. Japan on the other hand sees a higher
jitter for video delivery possibly due to higher traffic and
geographical distance. In another case we simulated a
heavily loaded server by adding traffic to the Washington
node. The results show the increased delay for such a
busy node. To include a few baseline experiments for
comparison sake, we also tested the jitter across baseline
scenarios such as a single hop wired and wireless link.
All these readings are easily obtainable either through
the ORBIT measurement library (OML) framework using
the integrated tcpdump[9] tool. These experiments do
not aim to specify performance of these algorithms with
individual nodes but rather show the usefulness of using
the integration models (ODIE/PDIE) to obtain results for

Exp. 1

Exp. 3

Exp. 2

Exp. 1

Exp. 2

Exp. 3

Servers
Mobile

Clients

Channel x

3 VAPs

Fig. 10. Experiment layout where nodes are added from PlanetLab
while the VAP support from the 802.11 linux drivers is exploited for
running multiple networks from a physical AP.

averaging and testing across multiple nodes with repeated
experiments.
Bit rate measurement: Figure 11 shows a plot of
observed video bit rate at the client as a function of time.
These bit rates are measured in the same experiments
where we measured the jitter results shown in Figure 7.
Experiment setup is the same as that shown in Figure 9.
Figure 11 shows that the observed bit rate for the videos
decreases with the PlanetLab node in Japan as compared
to those in Princeton or Washington. Calibration tests
performed over the one hop wired and wireless networks
server as a baseline for comparison. Figure 12 shows
the performance of the individual flows in terms of the
average bit rate at the wireless client for the same video.
Surprisingly the increased load on the Washington node
only shows increased jitter in the video delivered with a
comparable mean bit rate. The PlanetLab node in Japan
has a significantly deteriorated bit rate at the client.

These results would help provide a deep understanding
and evaluation of proposed video delivery algorithms. It
would also help to better understand the limitation of me-
dia delivery over wired/wireless networks. Ongoing work
on designing robust and reliable transport-layer protocols
for achieving high quality video streaming would benefit
from the results of such experiments. In addition, research
on spectrum allocation, bandwidth management and inter-
Access Point communication protocols would require the
presence of a similar framework.

We would like to emphasize again, that the goal of these
experiments is not to quantify individual test performance
results (since tests over the internet are not entirely
reproducible), but rather to show that the infrastructure
based on our ODIE and PDIE models can be easily used
for averaging and comparing performance across variety
of nodes and experiment trials.

A disadvantage of using frequency division multiple
access (FDMA) for virtualization on the ORBIT grid is
that it does not scale well with the number of nodes
and available orthogonal frequencies. In the next section
we explain results based on a virtual access point based
approach to virtualization on the ORBIT grid.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

Experiment duration (Secs)

V
id

eo
 B

it
R

at
e

(M
b/

se
c)

Source Bit−rate
PlanetLab Princeton
PlanetLab Washington
PL Washington (loaded)
PlanetLab Japan

Fig. 11. Observed bit rate with the same test video being delivered
from different PlanetLab nodes.

Wireless Pl−Princeton Pl−Wash Wash (loaded) Pl−Japan
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Scenarios

O
bs

er
ve

d
B

it−
R

at
e(

M
bp

s)

Mean of Bit−Rate of received video
Variance in Bit−Rate of received video

Fig. 12. Mean and variance statistics from the video bit rates observed
at the client node.

0 30 60 90 120 150
0

2

4

6

8

10

12

Time (secs)

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Throughput from Flow of experiment 1
Throughput from Flow of experiment 2
Offered Load on Each experiment

Experiments reach
saturation with increased
offered load

Fig. 13. Throughput (Mbps) seen at the wireless client without lack
of traffic shaping or policy management for bandwidth control.

(a) Below saturation video at the start
of the experiment

(b) The data flows saturate the channel,
thereby resulting in deterioration of the
video quality

(c) Video performance after traffic
shaping with manual intervention.
Availability of sufficient bandwidth
restores the video quality

Fig. 14. Video performance as the experiments progress with increasing offered loads. Video is observed by forwarding the traffic from the client
node to an observation node in the grid.

0 30 60 90 120 150
0

2

4

6

8

10

12

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (secs)

Throughput from Flow of experiment 1

Throughput from Flow of experiment 2

Offered load on each experiment

Experiment
flows are
manually
rate limited

Fig. 15. Throughput (Mbps) seen at the wireless client where manual
intervention rate limits flows to stop channel saturation.

0 30 60 90 120 150
0

2

4

6

8

10

Time (secs)

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(M

b
/s

ec
)

Throughput from Flow of experiment 1
Throughput from Flow of experiment 2
Offered load on each experiment

Experiment flows are
rate limited even before

the channel saturates

Fig. 16. Throughput (Mbps) seen at the wireless client where
individual flow rates are pre-decided by the policy manager. Channel
never saturates.

B. Virtual Access Point Based ORBIT slicing coupled
with PlanetLAB

These proof-of-concept experiments use virtualization
at the MAC layer with the introduction of a VAP (Virtual
Access Point). The VAP provides logical partitioning
among the experiments based on ESSIDs[27]. Its use is
limited to fixed-star topologies to support long-running
concurrent experiments. As compared to the FDMA based
virtualization, this approach conserves the number of
nodes and channels used by the experiments.
Aim : The goal of this experiment is to show some
preliminary results that can be obtained with a typical
ODIE/PDIE experiment. We also show that if a VAP
based approach is used for virtualization on the grid, there
are concerns with the performance of one experiment af-
fecting the other. We follow this with a proposed solution
to the interference problem.
Topology and setup: Figure 10 shows the setup for
this test. This setup consists of two UDP-CBR traffic
flows belonging to two independent experiments which
are being sent by servers running on PlanetLab nodes to
their respective clients running on the ORBIT grid. The
third flow is a video streaming from one of the Planetlab
nodes to the clients running on the ORBIT grid. To setup
this configuration of nodes an experiment script to similar
to the one shown in Figure 5 may be used.

Figure 13 shows a plot of the two UDP traffic flows
as seen at the receiver on the wireless client node. The
offered load for each of these experiments is increased
as a function of time for each of these experiments. As
long as the aggregate offered load is below saturation,
both flows have a fair share of the throughput. Figure
14(a) shows the video seen at the client node which is
represents the traffic of the third experiment in the setup.
It can be observed that since there are very few packet
drops and low congestion in both the wired and wireless
network the video is clear.

As the offered load for each of the experiments is
increased with time, the aggregate traffic on the wire-
less network reaches saturation. Figure 13 shows that
in saturation the net throughput seen for both flows are
comparable. However, the picture in Figure 14(b) shows

that the video suffers considerably when the wireless
channel is in saturation. The increased distortion in the
video quality may be attributed to the increased levels of
jitter and dropped packets with the video flow. To prevent
such situations where the performance of one experiment
affects the other we incorporate the use of traffic control
with the experiments. Possible approaches to bandwidth
control are:

1) Manual intervention
2) Policy manager based interference control
Figure 15 shows a typical scenario with manual in-

tervention in an experiment. Initially as the aggregate
offered load is increased, the experiments are pushed
into saturation. However, with manual intervention it is
possible to rate limit the traffic flows. We make use
of Click Modular Router [32] as a tool to implement
bandwidth shaping. It is also possible to have a policy
manager to decide the maximum share of throughputs
of these experiments, even before they are started. The
policy managed could be integrated with the experiment
scheduling and resource tracking mechanisms to ensure
that each of the experiments get a fair share of the
resources. Figure 16 shows the results with a dummy
policy manager. Both the experiments are rate limited to
their assigned throughput values even before they reach
channel saturation. Figure 14(c) shows a snapshot of the
improved video seen at the client after traffic shaping is
used at the VAP.

VII. ACKNOWLEDGMENT

The authors would like to acknowledge the contribu-
tions of Pandurang Kamat and Kishore Ramachandran
from WINLAB for their contribution to the ORBIT-PL
integration project.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

The unified designs presented in this paper should serve
as a practical foundation for wired/wireless integration in
future heterogeneous testbeds. We believe that the com-
mon control and management model, presented here, for
a globally distributed networking infrastructure will lead
to easier and faster experimentation and more efficient use
of testbed resources.

REFERENCES

[1] NSF Global Environment For Network Innovations (GENI). http:
//www.geni.net/

[2] GENI Design Principles in http://www.geni.net/
designprinciples.pdf

[3] C. Doerr A. Sheth M. Neufeld J. Fifield D. Grunwald SoftMac:
Flexible Wireless Research Platform, in Hot Topics in Networking
(HotNets-IV), 2005.

[4] D. Raychaudhuri and Editors M. Gerla, New architectures and
disruptive technologies for the future internet: The wireless, mobile
and sensor network perspective in Report of NSF Wireless Mobile
Planning Group (WMPG) Workshop, August 2005.

[5] D. Culler L. Peterson, T. Anderson and T. Roscoe, ”A blueprint
for introducing disruptive technology into the internet,” in First
Workshop on Hot Topics in Networking (HotNets-I), 2002.

[6] L. Stoller R. Ricci S. Guruprasad M. Newbold M. Hibler C. Barb
B. White J. Lepreau A. Joglekar ”An integrated experimental
environment for distributed systems and networks,” in Proceedings
of the 4th Symposium on Operating System Design and Implemen-
tation (OSDI 2002), 2002

[7] RFC3147, Generic Routing Encapsulation over CLNS Networks,
IETF draft of the networking working group, July 2001

[8] Videolan Player in http://www.videolan.org/vlc/
[9] Manpage of tcpdump in http://www.tcpdump.org/
[10] XBONE in http://www.isi.edu/xbone/
[11] DETER TestBed in http://www.isi.edu/deter
[12] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,

H. Kremo, R. Siracusa, H. Liu, and M. Singh, Overview of the
orbit radio grid testbed for evaluation of next-generation wireless
network protocols in Wireless Communications and Networking
Conference,2005

[13] ”Wisconsin advanced internet laboratory” in http://wail.
cs.wisc.edu

[14] Implementing the emulab-planetlab portal :Experiences and
lessons learned, in Proceedings of the First Workshop on Real,
Large Distributed Systems (WORLDS 2004),2004.

[15] B. Chun PSSH/PSCP tool http://www.theether.org/
[16] E. Bugnion S. Devine and M. Rosenblum, Virtualization system

including a virtual machine monitor for a computer with a seg-
mented architecture in US Patent, 6397242, 1998.

[17] Connectix, product overview: Connectix virtual server, 2003 in
http://www.connectix.com/products/vs.html

[18] K. Fraser S. Hand T. Harris A. Ho R. Neugebauer I. Pratt
P. Barham, B. Dragovic and A. Warfield, Xen and the art of
virtualization in SOSP, 2003

[19] M. Shaw A. Whitaker S.D. Gribble Scale and performance in the
denali isolation kernel in Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, 2002

[20] S. Shenker L. Peterson and J. Turner Overcoming the internet
impasse through virtualization in Third Workshop on Hot Topics
in Networking (HotNets-III),2004.

[21] PlanetLab: An Open Platform For Developing, Deploying
and Accessing Planetary-Scale Services in https://www.
planet-lab.org/

[22] M. Huang, Vnet: Planetlab virtualized network access,” in
http://www.planet-lab.org/PDN/PDN-05-029.

[23] Ensim corp. ensim virtual private server,” in in
http://www.ensim.com/products/materials/
datasheetvps051003.pdf

[24] J. Dike, User-mode linux in Proceedings of the 5th Annual Linux
Showcase and Conference, 2001.

[25] Ieee standards for local and metropolitan area networks, ieee std
802.1q, virtual bridged local area networks,” 2003.

[26] M. Singh, M. Ott, I. Seskar P. Kamat ORBIT Mea-
surements Framework and Library (OML): Motivations, De-
sign,Implementation, and Features in Proceedings of IEEE Tri-
dentcom 2005, Trento, Italy, Feb 2005

[27] Creating virtual ap on madwifi http://madwifi.org/wiki/
UserDocs/MultipleInterfaces

[28] B. Lim J. Sugerman, G. Venkitachalam Virtualizing i/o devices
on vmware workstation’s hosted virtual machine monitor” in
Proceedings of the USENIX Annual Technical Conference, 2002.

[29] R. Siracusa M. Singh M. Ott, I. Seskar ORBIT testbed software
architecture: Supporting experiments as a service in Proceedings of
IEEE Tridentcom, 2005.

[30] C. Law, A Mehta, and K. Siu, A New Bluetooth Scatternet
Formation Protocol, ACM Mobile Networks and Applications
Journal, 2002.

[31] C. Law and K. Siu, A Bluetooth Scatternet Formation Algorithm,
IEEE Symposium on Ad Hoc Wireless Networks, November 2001.

[32] Click Modular Router. http://read.cs.ucla.edu/
click/

[33] IPERF, TCP/UDP Traffic Generation Tool, http://dast.
nlanr.net/Projects/Iperf/

[34] P. Barford and M. Crovella, Generating Representative Web
Workloads for Network and Server Performance Evaluation, In
Proceedings of the ACM SIGMETRICS, pages 151-160, Madison
WI, November 1998.

